Robot does superior job sampling blood

In the future, robots could take blood samples, benefiting patients and healthcare workers alike. A Rutgers-led team has created a blood-sampling robot that performed as well or better than people, according to the first human clinical trial of an automated blood drawing and testing device.

Photo
A prototype of an automated blood drawing and testing device.
Source: Unnati Chauhan

The device provides quick results and would allow healthcare professionals to spend more time treating patients in hospitals and other settings. The results were comparable to or exceeded clinical standards, with an overall success rate of 87% for the 31 participants whose blood was drawn. For the 25 people whose veins were easy to access, the success rate was 97%.

The device includes an ultrasound image-guided robot that draws blood from veins. A fully integrated device, which includes a module that handles samples and a centrifuge-based blood analyzer, could be used at bedsides and in ambulances, emergency rooms, clinics, doctors’ offices and hospitals.

Venipuncture, which involves inserting a needle into a vein to get a blood sample or perform IV therapy, is the world’s most common clinical procedure, with more than 1.4 billion performed yearly in the United States. But clinicians fail in 27% of patients without visible veins, 40% of patients without palpable veins and 60% of emaciated patients, according to previous studies.

Repeated failures to start an IV line boost the likelihood of phlebitis, thrombosis and infections, and may require targeting large veins in the body or arteries – at much greater cost and risk. As a result, venipuncture is among the leading causes of injury to patients and clinicians. Moreover, a hard time accessing veins can increase procedure time by up to an hour, requires more staff and costs more than $4 billion a year in the United States, according to estimates. “A device like ours could help clinicians get blood samples quickly, safely and reliably, preventing unnecessary complications and pain in patients from multiple needle insertion attempts,” said lead author Josh Leipheimer, a biomedical engineering doctoral student in the Yarmush lab in the biomedical engineering department in the School of Engineering at Rutgers University–New Brunswick.

In the future, the device could be used in such procedures as IV catheterization, central venous access, dialysis and placing arterial lines. Next steps include refining the device to improve success rates in patients with difficult veins to access. Data from this study will be used to enhance artificial intelligence in the robot to improve its performance.

Subscribe to our newsletter

Related articles

Lab-on-a-chip turns blood test snapshots into movies

Lab-on-a-chip turns blood test snapshots into movies

The new device can continuously sense levels of virtually any protein or molecule in the blood. The researchers say it could be transformative for disease detection, patient monitoring and biomedical research.

Robot uses AI and imaging to draw blood

Robot uses AI and imaging to draw blood

Engineers have created a tabletop device that combines a robot, AI and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.

An automated robotic device for faster blood testing

An automated robotic device for faster blood testing

Researchers have created an automated blood drawing and testing device that provides rapid results,could speed hospital work, enhance healthcare.

Device stops bleeding from knife wounds

Device stops bleeding from knife wounds

A student at Loughborough University has designed life-saving device that rapidly stops bleeding from knife wounds.

Microchip sensor measures stress hormones

Microchip sensor measures stress hormones

Researchers have developed a microchip that can measure stress hormones in real time from a drop of blood.

Wearables can help predict blood test results

Wearables can help predict blood test results

Smartwatches and other wearable devices may be used to sense illness, dehydration and even changes to the red blood cell count.

Tiny injectable chips use ultrasound for monitoring

Tiny injectable chips use ultrasound for monitoring

Engineers have developed the smallest single-chip system that is a complete functioning electronic circuit - and implantable chip visible only in a microscope.

New law of physics helps robots grasp the friction of touch

New law of physics helps robots grasp the friction of touch

Researchers have discovered a new law of physics that accounts for that accounts for elastohydrodynamic lubrication (EHL) friction, which should advance a wide range of robotic technologies.

Medical needles for high-tech cancer diagnostics

Medical needles for high-tech cancer diagnostics

Modern medicine needs better quality samples than traditional biopsy needles can provide, ultrasonically oscillating needles can improve treatment and reduce discomfort.

Popular articles

Subscribe to Newsletter