Robotic cane shown to improve stability in walking

By adding electronics and computation technology to a simple cane that has been around since ancient times, a team of researchers at Columbia Engineering have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.

Photo
Left) A view of CANINE. The LIDAR was positioned at the rear of the robot for better viewing of the subject’s legs. (Top right) The virtual environment. (Bottom right) The experimental setup, with a subject wearing the VR headset and maintaining light touch contact with CANINE.
Source: Danielle Stramel and Sunil Agrawal/Columbia Engineering

A team led by Sunil Agrawal, professor of mechanical engineering and of rehabilitation and regenerative medicine at Columbia Engineering, has demonstrated, for the first time, the benefit of using an autonomous robot that “walks” alongside a person to provide light-touch support, much as one might lightly touch a companion’s arm or sleeve to maintain balance while walking. “Often, elderly people benefit from light hand-holding for support,” explained Agrawal, who is also a member of Columbia University’s Data Science Institute. “We have developed a robotic cane attached to a mobile robot that automatically tracks a walking person and moves alongside,” he continued. “The subjects walk on a mat instrumented with sensors while the mat records step length and walking rhythm, essentially the space and time parameters of walking, so that we can analyze a person’s gait and the effects of light touch on it.”

The light-touch robotic cane, called CANINE, acts as a cane-like mobile assistant. The device improves the individual’s proprioception, or self-awareness in space, during walking, which in turn improves stability and balance. “This is a novel approach to providing assistance and feedback for individuals as they navigate their environment,” said Joel Stein, Simon Baruch Professor of Physical Medicine and Rehabilitation and chair of the department of rehabilitation and regenerative medicine at Columbia University Irving Medical Center, who co-authored the study with Agrawal. “This strategy has potential applications for a variety of conditions, especially individuals with gait disorders.”

To test this new device, the team fitted 12 healthy young people with virtual reality glasses that created a visual environment that shakes around the user—both side-to-side and forward-backward—to unbalance their walking gait. The subjects each walked 10 laps on the instrumented mat, both with and without the robotic cane, in conditions that tested walking with these visual perturbations. In all virtual environments, having the light-touch support of the robotic cane caused all subjects to narrow their strides. The narrower strides, which represent a decrease in the base of support and a smaller oscillation of the center of mass, indicate an increase in gait stability due to the light-touch contact.

“The next phase in our research will be to test this device on elderly individuals and those with balance and gait deficits to study how the robotic cane can improve their gait,” said Agrawal, who directs the Robotics and Rehabilitation (ROAR) Laboratory. “In addition, we will conduct new experiments with healthy individuals, where we will perturb their head-neck motion in addition to their vision to simulate vestibular deficits in people.”

While mobility impairments affect 4% of people aged 18 to 49, this number rises to 35% of those aged 75 to 80 years, diminishing self-sufficiency, independence, and quality of life. By 2050, it is estimated that there will be only five young people for every old person, as compared with seven or eight today. “We will need other avenues of support for an aging population,” Agrawal noted. “This is one technology that has the potential to fill the gap in care fairly inexpensively.”

Subscribe to our newsletter

Related articles

Artificial skin could help enhance rehabilitation

Artificial skin could help enhance rehabilitation

Scientists have developed a soft artificial skin that provides haptic feedback and has the potential to instantaneously adapt to a wearer’s movements.

‘Smart’ robotic system could offer home-based rehabilitation

‘Smart’ robotic system could offer home-based rehabilitation

An engineer is leading a team of researchers, health care providers and industry to fast-track the commercialization of a groundbreaking robotic rehabilitation system.

Understanding human-robot interaction critical for rehabilitation systems

Understanding human-robot interaction critical for rehabilitation systems

Robotic body-weight support devices can play a key role in helping people with neurological disorders to improve their walking.

Robot-assisted therapy can help treat stroke survivors

Robot-assisted therapy can help treat stroke survivors

Exoskeleton-assisted rehabilitation can be beneficial in treating stroke survivors.

Brain-machine interface turns intentions into actions

Brain-machine interface turns intentions into actions

A wearable brain-machine interface system could improve the quality of life for people with motor dysfunction or paralysis, even those struggling with locked-in syndrome.

Multiple sclerosis: Exoskeleton therapy improves mobility

Multiple sclerosis: Exoskeleton therapy improves mobility

Experts at Kessler Foundation led the first pilot randomized controlled trial of robotic-exoskeleton assisted exercise rehabilitation effects on mobility, cognition, and brain connectivity in people with substantial MS-related disability.

FDA authorized brain-computer interface for stroke rehab

FDA authorized brain-computer interface for stroke rehab

Neurolutions IpsiHand exoskeleton uniquely leverages brain-computer interface technology for chronic stroke rehabilitation

VR could help improve balance in older people

VR could help improve balance in older people

Researchers are investigating how virtual reality technology could help improve balance and prevent falls.

Powered prosthetic ankles restore functions for amputees

Powered prosthetic ankles restore functions for amputees

Researchers have demonstrated that, with training, neural control of a powered prosthetic ankle can restore a wide range of abilities, including standing on very challenging surfaces and squatting.

Popular articles

Photo

The “RoboWig” untangle your hair

Nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.

Subscribe to Newsletter