Researchers have developed a new method to guide endovascular instruments into...
Researchers have developed a new method to guide endovascular instruments into complex vascular structures that were inaccessible to endovascular surgeons until now.
Source: Massouh bioMEDia for the Polytechnique Montréal Nanorobotics Laboratory
10.12.2019 •

Robotic system for endovascular instrument guidance

A team led by Professor Sylvain Martel at the Polytechnique Montréal Nanorobotics Laboratory has developed a novel approach to tackling one of the biggest challenges of endovascular surgery: how to reach the most difficult-to-access physiological locations.

Their solution is a robotic platform that uses the fringe field generated by the superconducting magnet of a clinical magnetic resonance imaging (MRI) scanner to guide medical instruments through deeper and more complex vascular structures.

When a researcher “thinks outside the box”—literally

Imagine having to push a wire as thin as a human hair deeper and deeper inside a very long, very narrow tube full of twists and turns. The wire’s lack of rigidity, along with the friction forces exerted on the walls of the tube, will eventually render the manoeuvre impossible, with the wire ending up folded on itself and stuck in a turn of the tube. This is exactly the challenge facing surgeons who seek to perform minimally invasive procedures in ever-deeper parts of the human body by steering a guidewire or other instrumentation (such as a catheter) through narrow, tortuous networks of blood vessels.

It is possible, however, to harness a directional pulling force to complement the pushing force, countering the friction forces inside the blood vessel and moving the instrument much farther. The tip of the device is magnetized, and pulled along inside the vessels by the attraction force of another magnet. Only a powerful superconducting magnet outside the patient’s body can provide the extra attraction needed to steer the magnetized device as far as possible. There is one piece of modern hospital equipment that can play that role: an MRI scanner, which has a superconducting magnet that generates a field tens of thousands of times stronger than that of the Earth.

The magnetic field inside the tunnel of an MRI scanner, however, is uniform; this is key to how patient imaging is performed. That uniformity poses a problem: to pull the tip of the instrument through the labyrinthine vascular structures, the guiding magnetic field must be modulated to the greatest possible amplitude and then be decreased as quickly as possible.

Pondering that problem, Professor Martel had the idea of using not the main magnetic field present inside the MRI machine tunnel, but the so-called fringe field outside the machine. “Manufacturers of MRI scanners will normally reduce the fringe field to the minimum,” he explains. “The result is a very-high-amplitude field that decays very rapidly. For us, that fringe field represents an excellent solution that is far superior to the best existing magnetic guidance approaches, and it is in a peripheral space conducive to human-scale interventions. To the best of our knowledge, this is the first time that an MRI fringe field has been used for a medical application,” he adds.

Move the patient rather than the field

To steer an instrument deep within blood vessels, not only is a strong attraction force required, but that force must be oriented to pull the magnetic tip of the instrument in various directions inside the vessels. Because of the MRI scanner’s size and weight, it’s impossible to move it to change the direction of the magnetic field. To get around that issue, the patient is moved in the vicinity of the MRI machine instead. The platform developed by Professor Martel’s team uses a robotic table positioned within the fringe field next to the scanner.

The table, designed by Arash Azizi—the lead author of the article and a biomedical engineering PhD candidate whose thesis advisor is Professor Martel—can move on all axes to position and orient the patient according to the direction in which the instrument must be guided through their body. The table automatically changes direction and orientation to position the patient optimally for the successive stages of the instrument’s journey thanks to a system that maps the directional forces of the MRI scanner’s magnetic field—a technique that Professor Martel has dubbed Fringe Field Navigation (FFN).

An in-vivo study of FFN with X-ray mapping demonstrated the capacity of the system for efficient and minimally invasive steering of extremely small-diameter instruments deep within complex vascular structures that were hitherto inaccessible using known methods.

Robots to the rescue of surgeons

This robotic solution, which greatly outperforms manual procedures as well as existing magnetic field–based platforms, enables endovascular interventional procedures in very deep, and therefore currently inaccessible, regions of the human body.

The method promises to broaden possibilities for application of various medical procedures including diagnosis, imaging and local treatments. Among other things, it could serve to assist surgeons in procedures requiring the least invasive methods possible, including treatment of brain damage such as an aneurysm or a stroke.

Subscribe to our newsletter

Related articles

World’s first intra-operative MRI-guided robot for neurosurgery

World’s first intra-operative MRI-guided robot for neurosurgery

An engineer designed the first neurosurgical robotic system capable of performing bilateral stereotactic neurosurgery inside a MRI scanner.

Robots with tiny lasers could soon erase regrettable tattoos

Robots with tiny lasers could soon erase regrettable tattoos

Researchers are using laser scalpels and precision robotics to make tattoo removal faster, more accurate and less painful.

‘Uncanny Valley’: Brain network evaluates robot likeability

‘Uncanny Valley’: Brain network evaluates robot likeability

Scientists have identified mechanisms in the human brain that could help explain the the unsettling feeling we get from robots and virtual agents that are too human-like.

Robotic technology enhances spine surgery

Robotic technology enhances spine surgery

Spine surgery: A new robotic technology increases the safety and precision of spinal fusion surgeries while reducing the time needed for the procedure.

MURAB: Roboter-assisted diagnostic of breast cancer

MURAB: Roboter-assisted diagnostic of breast cancer

The Murab project is developing technology that will make it possible to take more accurate biopsies and diagnose cancer and other illnesses faster.

Federated learning allows hospitals to share data privately

Federated learning allows hospitals to share data privately

Researchers have shown that federated learning is successful in the context of brain imaging, by being able to analyze MRI scans of brain tumor patients and distinguish healthy brain tissue from cancerous regions.

Towards an AI diagnosis like the doctor's

Towards an AI diagnosis like the doctor's

Researchers show how they can make an AI show how it's working, as well as let it diagnose more like a doctor, thus making AI-systems more relevant to clinical practice.

First AR minimally-invasive spine surgery

First AR minimally-invasive spine surgery

Dr. Frank Phillips, Professor and Director of the Division of Spine Surgery and the Section of Minimally Invasive Spine Surgery at Rush University Medical Center, completed the first augmented reality (AR) minimally invasive spine surgery.

Ultrasound for space offers remote diagnosis to patients on Earth

Ultrasound for space offers remote diagnosis to patients on Earth

Radiologists are investigating people's medical conditions and pregnancies remotely thanks to an ESA-backed robotic technology.

Popular articles