Thin and light new pump which is the same size as a credit card.
Thin and light new pump which is the same size as a credit card.
Source: Tim Helps, University of Bristol

Robotics: Soft pumps power artificial muscles

Robotic clothing that is entirely soft and could help people to move more easily is a step closer to reality thanks to the development of a new flexible and lightweight power system for soft robotics.

The discovery by a team at the University of Bristol could pave the way for wearable assist devices for people with disabilities and people suffering from age-related muscle degeneration.

Soft robots are made from compliant materials that can stretch and twist. These materials can be made into artificial muscles that contract when air is pumped into them. The softness of these muscles makes then suited to powering assistive clothing. Until now, however, these pneumatic artificial muscles have been powered by conventional electromagnetic (motor-driven) pumps, which are bulky, noisy, complex and expensive.

Researchers from Bristol's SoftLab and Bristol Robotics Laboratory led by Jonathan Rossiter, Professor of Robotics, have successfully demonstrated a new electro-pneumatic pump that is soft, bendable, low-cost and easy to make.

In the paper the team describe how the new credit card-sized soft pump can power pneumatic bubble artificial muscles and pump fluids. The team also outline their next steps to make power clothing a reality.

Professor Rossiter from Department of Engineering Mathematics at Bristol and Head of the Soft Robotics group at BRL, said: "The lives of thousands of people with mobility issues could be transformed with this new technology. The new pumps are an important development that will help us deliver comfortable, and stylish, power-assisting clothing. We are now working to make the electro-pneumatic pumps smaller and more efficient and are actively seeking partners to commercialize the technologies."

The study was published in Science Robotics.

Subscribe to our newsletter

Related articles

Sensor for smart textiles survives hammers

Sensor for smart textiles survives hammers

An ultra-sensitive, resilient strain sensor that can be embedded in textiles and soft robotic systems survived being tested by a washing machine and a car.

Robotic textiles could enable new mechanotherapy

Robotic textiles could enable new mechanotherapy

A new smart fabric that can be inflated and deflated by temperature-dependent liquid-vapor phase changes could enable a range of medical therapeutics.

DNA robots designed in minutes instead of days

DNA robots designed in minutes instead of days

Someday, scientists believe, tiny DNA-based robots and other nanodevices will deliver medicine inside our bodies, detect the presence of deadly pathogens, and help manufacture increasingly smaller electronics.

A 3D printed, sweating robot muscle

A 3D printed, sweating robot muscle

Researchers used 3D printing to create a soft robot muscle that can regulate its temperature through sweating.

Ultra-thin sensitive strain sensors

Ultra-thin sensitive strain sensors

Researchers have developed a new range of nanomaterial strain sensors that are 10 times more sensitive when measuring minute movements, compared to existing technology.

Designing soft and sensitive robotic fingers

Designing soft and sensitive robotic fingers

Scientists have designed a 3D printable soft robotic finger containing a built-in sensor with adjustable stiffness.

3D printing strong and tough hydrogels

3D printing strong and tough hydrogels

Skin and cartilage are both strong and flexible – properties that are hard to replicate in artificial materials. But a new fabrication process brings lifelike synthetic polymers a step closer.

E-skin: Engineers imitate hands to make better sensors

E-skin: Engineers imitate hands to make better sensors

Researchers have developed “electronic skin” sensors capable of mimicking the dynamic process of human motion.

Scientists get soft on 3D printing

Scientists get soft on 3D printing

Researchers have developed a new method of 3D printing gels and other soft materials.

Popular articles

Subscribe to Newsletter