Rubbery semiconductor for medical robotic hands

Researchers at University of Houston have designed and produced a smart electronic skin and a medical robotic hand capable of assessing vital diagnostic data.

Photo
A medical robotic hand is just one potential application for the rubbery electronics reported by researchers.
Source: University of Houston

Researchers report in Science Advances that they have designed and produced a smart electronic skin and a medical robotic hand capable of assessing vital diagnostic data by using a newly invented rubbery semiconductor with high carrier mobility. Cunjiang Yu, Bill D. Cook Associate Professor of Mechanical Engineering at the University of Houston and corresponding author for the work, said the rubbery semiconductor material also can be easily scaled for manufacturing, based upon assembly at the interface of air and water.

That interfacial assembly and the rubbery electronic devices described in the paper suggest a pathway toward soft, stretchy rubbery electronics and integrated systems that mimic the mechanical softness of biological tissues, suitable for a variety of emerging applications, said Yu, who also is a principal investigator at the Texas Center for Superconductivity at UH.

The smart skin and medical robotic hand are just two potential applications, created by the researchers to illustrate the discovery’s utility.

Traditional semiconductors are brittle, and using them in otherwise stretchable electronics has required special mechanical accommodations. Previous stretchable semiconductors have had drawbacks of their own, including low carrier mobility – the speed at which charge carriers can move through a material – and complicated fabrication requirements.

Yu and collaborators last year reported that adding minute amounts of metallic carbon nanotubes to the rubbery semiconductor of P3HT – polydimethylsiloxane composite – improves carrier mobility, which governs the performances of semiconductor transistors. Yu said the new scalable manufacturing method for these high performance stretchable semiconducting nanofilms and the development of fully rubbery transistors represent a significant step forward.

The production is simple, he said. A commercially available semiconductor material is dissolved in a solution and dropped on water, where it spreads; the chemical solvent evaporates from the solution, resulting in improved semiconductor properties. It is a new way to create the high quality composite films, he said, allowing for consistent production of fully rubbery semiconductors.

Electrical performance is retained even when the semiconductor is stretched by 50%, the researchers reported. Yu said the ability to stretch the rubbery electronics by 50% without degrading the performance is a notable advance. Human skin, he said, can be stretched only about 30% without tearing.

Subscribe to our newsletter

Related articles

E-skin: Engineers imitate hands to make better sensors

E-skin: Engineers imitate hands to make better sensors

Researchers have developed “electronic skin” sensors capable of mimicking the dynamic process of human motion.

Electronic skin reacts to pain like human skin

Electronic skin reacts to pain like human skin

Researchers have developed electronic artificial skin that reacts to pain just like real skin, opening the way to better prosthetics, smarter robotics and non-invasive alternatives to skin grafts.

A deep learning e-skin decodes complex human motion

A deep learning e-skin decodes complex human motion

A deep learning powered single-strained electronic skin sensor can capture human motion from a distance.

Integrate micro chips for electronic skin

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Exceptional sensitive e-skin for prosthetics

Exceptional sensitive e-skin for prosthetics

Researchers have developed an e-skin that may soon have a sense of touch equivalent to, or better than, the human skin with the Asynchronous Coded Electronic Skin (ACES).

Spray coated tactile sensor for robots and prosthetics

Spray coated tactile sensor for robots and prosthetics

Robots will be able to conduct a wide variety of tasks as well as humans if they can be given tactile sensing capabilities.

Mini-brains help robots recognise pain

Mini-brains help robots recognise pain

Using a brain-inspired approach, scientists have developed a way for robots to have the AI to recognise pain and to self-repair when damaged.

Origami-inspired miniature manipulator for microsurgery

Origami-inspired miniature manipulator for microsurgery

Researchers have developed a surgical robot that improves precision and control of teleoperated surgical procedures.

Popular articles