Soft robotic gripper inspired by pole beans

Scientists often look to nature for cues when designing robots – some robots mimic human hands while others simulate the actions of octopus arms or inchworms. Now, researchers in the University of Georgia College of Engineering have designed a new soft robotic gripper that draws inspiration from an unusual source: pole beans.

While pole beans and other twining plants use their touch-sensitive shoots to wrap themselves around supports like ropes and rods to grow upward, the UGA team’s robot is designed to firmly but gently grasp objects as small as 1 millimeter in diameter.

“We had tried different designs but we were not happy with the results, then I recalled the pole beans I grew in our garden few years ago,” said Mable Fok, an associate professor and the study’s lead author. “This plant can hold onto other plants or rope so tightly. So, I did some research on twining plants and thought it was a good design from nature for us to explore.”

In a new study published in the journal Optics Express, the researchers say their soft robotic spiral gripper offers several advantages over existing robotic devices.

Only needs a small space

“Our robot’s twining action only requires a single pneumatic control, which greatly simplifies its operation by eliminating the need for complex coordination between multiple pneumatic controls,” said Fok. “Since we use a unique twining motion, the soft robotic gripper works well in confined areas and needs only a small operational space.”

The UGA device offers another advancement over many existing robotics: an embedded sensor to provide critical real-time feedback. “We have embedded a fiber optic sensor in the middle of the robot’s elastic spine that can sense the twining angle, the physical parameters of the target, and any external disturbances that might cause the target to come loose,” said Fok.

The researchers believe their soft robotic gripper – a little more than 3 inches long and fashioned from silicone – could be useful in many settings, including agriculture, medicine and research. Applications might include selecting and packaging agricultural products that require a soft touch such as plants and flowers, surgical robotics, or selecting and holding research samples in fragile glass tubes during experiments.

Recommended article

Highly accurate and precise

In their study, the research team says the spiral gripper proved effective in gripping objects such as pencils and paintbrushes – even an item as small as the thin wire of a straightened paperclip. The device also demonstrated excellent repeatability, high twining sensing accuracy and precise external disturbance detection.

In addition to Fok, the research team includes Mei Yang and Ning Liu, both Ph.D. candidates in engineering; Liam Paul Cooper, an undergraduate studying computer systems engineering; and Xianqiao Wang, an associate professor in the College of Engineering.

The team plans to continue its work with an eye on improving the automatic feedback control based on the readings of the fiber optic sensor. They also want to explore miniaturizing the design to serve as the foundation of a biomedical robot. “This twining soft robot with its embedded fiber optic sensor forms a building block for a more comprehensive soft robot. Having a simpler design and control is definitely an advantage,” said Fok.

Subscribe to our newsletter

Related articles

Why do human-like robots elicit uncanny feelings?

Why do human-like robots elicit uncanny feelings?

Many people experience an uneasy feeling in response to robots that are nearly lifelike, and yet somehow not quite “right”.

Sarcopenia: Robotic muscles could turn back body clock

Sarcopenia: Robotic muscles could turn back body clock

Loss of strength and muscle wastage is currently an unavoidable part of getting older and has a significant impact on health and quality of life.

Caterpillar-like robot could deliver drugs

Caterpillar-like robot could deliver drugs

A novel tiny, soft robot with caterpillar-like legs could pave the way for medical technology advances, such as drug delivery in the human body.

Tiny bubbles help create soft robotics

Tiny bubbles help create soft robotics

Researchers use bubble casting to create soft robotics capable of grabbing and lifting a ball when inflated with air.

ReSkin helps to discover a sense of touch

ReSkin helps to discover a sense of touch

Carnegie Mellon University and Meta AI (formerly Facebook AI) want to increase the sense of touch in robotics, wearables, smart clothing and AI.

New material could help robots flex their muscles

New material could help robots flex their muscles

Researchers have developed a shape memory polymer that stores almost six times more energy than previous versions.

Expanding human-robot collaboration in manufacturing

Expanding human-robot collaboration in manufacturing

To enhance human-robot collaboration, researchers at Loughborough University have trained an AI to detect human intention.

Navigation the brain's arteries with a steerable catheter

Navigation the brain's arteries with a steerable catheter

For the first time, a steerable catheter will give neurosurgeons the ability to steer the device in any direction they want while navigating the brain's arteries and blood vessels.

Can we trust robots who goofed?

Can we trust robots who goofed?

When robots make mistakes, reestablishing trust with human co-workers depends on how the machines own up to the errors and how human-like they appear.

Popular articles

Subscribe to Newsletter