Rotation of a flower with six petals. Turning on the LED in sync with the...
Rotation of a "flower" with six petals. Turning on the LED in sync with the rotation of every second petal beneath the magnet causes lifting of alternating petals, which remain lifted.
Source: Jessica A.-C. Liu

Soft robots to operate on human body

Researchers from North Carolina State University and Elon University have developed a technique that allows them to remotely control the movement of soft robots, lock them into position for as long as needed and later reconfigure the robots into new shapes. The technique relies on light and magnetic fields. “We’re particularly excited about the reconfigurability,” says Joe Tracy, a professor of materials science and engineering at NC State and corresponding author of a paper on the work.

“By engineering the properties of the material, we can control the soft robot’s movement remotely; we can get it to hold a given shape; we can then return the robot to its original shape or further modify its movement; and we can do this repeatedly. All of those things are valuable, in terms of this technology’s utility in biomedical or aerospace applications.”

For this work, the researchers used soft robots made of a polymer embedded with magnetic iron microparticles. Under normal conditions, the material is relatively stiff and holds its shape. However, researchers can heat up the material using light from a light-emitting diode (LED), which makes the polymer pliable. Once pliable, researchers demonstrated that they could control the shape of the robot remotely by applying a magnetic field. After forming the desired shape, researchers could remove the LED light, allowing the robot to resume its original stiffness – effectively locking the shape in place.

By applying the light a second time and removing the magnetic field, the researchers could get the soft robots to return to their original shapes. Or they could apply the light again and manipulate the magnetic field to move the robots or get them to assume new shapes.

In experimental testing, the researchers demonstrated that the soft robots could be used to form “grabbers” for lifting and transporting objects. The soft robots could also be used as cantilevers, or folded into “flowers” with petals that bend in different directions. “We are not limited to binary configurations, such as a grabber being either open or closed,” says Jessica Liu, first author of the paper and a Ph.D. student at NC State. “We can control the light to ensure that a robot will hold its shape at any point.”

In addition, the researchers developed a computational model that can be used to streamline the soft robot design process. The model allows them to fine-tune a robot’s shape, polymer thickness, the abundance of iron microparticles in the polymer, and the size and direction of the required magnetic field before constructing a prototype to accomplish a specific task. “Next steps include optimizing the polymer for different applications,” Tracy says. “For example, engineering polymers that respond at different temperatures in order to meet the needs of specific applications.”

Subscribe to our newsletter

Related articles

avateramedical acquires robotics specialist FORWARDttc

avateramedical acquires robotics specialist FORWARDttc

avateramedical GmbH announced the acquisition of FORWARDttc GmbH, an automation technology company with special focus on robotics hard- and software.

Self-healing material for soft machines

Self-healing material for soft machines

Scientists have developed a soft synthetic material that can heal itself within a second after damage.

A new mechanical controller design for robot-assisted surgery

A new mechanical controller design for robot-assisted surgery

Scientists have designed a new type of controller for the robotic arm used in robotic surgery.

Integrate micro chips for electronic skin

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

Single-port robotic surgical tech has taken next step

Single-port robotic surgical tech has taken next step

Engineers aim to offer minimally invasive surgery through a single incision, rather than several incisions.

Avatera robot cleared for minimally invasive laparoscopy

Avatera robot cleared for minimally invasive laparoscopy

Introduction of the avatera system into everyday clinical practice in Europe and a broad market launch expected in 2020.

Implants: reconfigurable electronics promise innovations

Implants: reconfigurable electronics promise innovations

Medical implants of the future may feature reconfigurable electronic platforms that can morph in shape and size dynamically.

A flexible endoscopic surgical robot reaches new areas

A flexible endoscopic surgical robot reaches new areas

K-FLEX, a flexible endoscopic surgical robot developed opens a new chapter for precise and minimally invasive robot-assisted surgery.

The basics of robotic surgery

The basics of robotic surgery

A surgeon describes the basics of robotic surgery and dispels common myths.

Popular articles

Subscribe to Newsletter