“UVD Robot” by Blue Ocean Robotics drives autonomously and eliminates...
“UVD Robot” by Blue Ocean Robotics drives autonomously and eliminates bacteria and other harmful microorganisms in hospitals.
Source: Blue Ocean Robotics

The UVD Robot destroys hospital bugs

“UVD Robot” by Blue Ocean Robotics drives autonomously and eliminates bacteria and other harmful microorganisms on all contact surfaces in hospitals.

The 15th Innovation and Entrepreneurship Award in Robotics and Automation (IERA) goes to the “UVD Robot” by Blue Ocean Robotics. The collaborative robot autonomously drives around hospitals while emitting concentrated UV-C light to eliminate bacteria and other harmful microorganisms. As a result, hospitals can guarantee a 99.99% disinfection rate – reducing the risk for patients, staff and relatives of contracting dangerous infections.

“The UV disinfection robot by Blue Ocean Robotics shows that robotics has a limitless potential of being applied in new environments,” said Arturo Baroncelli, former President of the International Federation of Robotics which co-sponsors the IERA award. “The combination of ‘classical’ mechatronic disciplines – typical of robotics – with the know-how of medicine and pharmacy is fantastic evidence of this path of progress. The IFR is happy to recognise and support this virtual trend.”

UVD Robot disinfects all contact surfaces autonomously

Infections acquired in hospitals cause significant costs in the healthcare sector: In the EU, these costs amount to 7 billion euros. The source of infections can be other patients or staff and even equipment or the hospital environment. The UVD Robot drives around and positions itself autonomously in relation to its surroundings. The machine treats surfaces in a hospital ward with light from several angles and up close. The robot disinfects all contact surfaces, stopping at predefined hotspots that require a longer time of exposure. The UV disinfection robot does not replace the manual cleaning process – it is designed as a complimentary activity and always works in enclosed spaces.

As exposure of UV-C light toward humans should be avoided, the robot contains a number of safety features: for example, a tablet which is placed on the door of the patient room acts as a motion sensor – it automatically disengages the UV-C light if someone wants to enter the room.

The technology has been developed in cooperation with leading hospitals in Scandinavia. First sales have been made in the Middle East and Asia. In future, the robot can also be applied to other environments requiring diligent disinfection such as food production or laboratories.

Recommended article

Subscribe to our newsletter

Related articles

An army of microrobots can wipe out dental plaque

An army of microrobots can wipe out dental plaque

Researchers developed a microscopic robotic cleaning crew. With two types of robotic systems the scientists showed that robots with catalytic activity could ably destroy biofilms.

'Skin' sensor gives robots human sensation

'Skin' sensor gives robots human sensation

Researchers at Cornell University have developed stretchable sensors that gives robots and VirtualReality a human touch.

Sensor for smart textiles survives hammers

Sensor for smart textiles survives hammers

An ultra-sensitive, resilient strain sensor that can be embedded in textiles and soft robotic systems survived being tested by a washing machine and a car.

A flexible and highly reliable sensor

A flexible and highly reliable sensor

A novel e-skin, called TRACE, performs five times better than conventional soft materials. It is suitable for measuring blood flow for pulse diagnosis and helping robots to 'feel' the texture of surfaces.

Mini-brains help robots recognise pain

Mini-brains help robots recognise pain

Using a brain-inspired approach, scientists have developed a way for robots to have the AI to recognise pain and to self-repair when damaged.

Diamond-studded silk wound dressing improves healing

Diamond-studded silk wound dressing improves healing

Scientists have developed a next generation wound dressing that can detect infection and improve healing in burns, skin grafts and chronic wounds.

COVID-19: Sensor rapidly detects severity and immunity

COVID-19: Sensor rapidly detects severity and immunity

Researchers have built a low-cost multiplex test that can rapidly provide three different types of data on COVID-19.

E-skin: Engineers imitate hands to make better sensors

E-skin: Engineers imitate hands to make better sensors

Researchers have developed “electronic skin” sensors capable of mimicking the dynamic process of human motion.

Rubbery semiconductor for medical robotic hands

Rubbery semiconductor for medical robotic hands

Researchers have designed and produced a smart electronic skin and a medical robotic hand capable of assessing vital diagnostic data.

Popular articles