Understanding human-robot interaction critical for rehabilitation systems
Source: Delft University of Technology

Understanding human-robot interaction critical for rehabilitation systems

Robotic body-weight support (BWS) devices can play a key role in helping people with neurological disorders to improve their walking.

he team that developed the advanced body-weight support device RYSEN in 2018 has since gained more fundamental insight in BWS but also concludes that improvement in this field is necessary. They find that recommendations for the optimal therapy settings have to be customized to each device and that developers should be more aware of the interaction between patient and the device.

Rehabilitation

Stroke, spinal cord injury or other neurological disorders can lead to impairments that severely impact the quality of life. Intensive gait neurorehabilitation training can help these individuals regain mobility and lower the workload of revalidation therapists. This can be realised with so-called robotic body-weight support devices. Examples of the latest generation of such robotic devices are the FLOAT and the RYSEN. One of their special features is the incorporation of adjustable support force in 3D.

"Numerous studies have investigated the impact of BWS on gait patterns, and the results are less consistent than one would expect’, says Prof. Heike Vallery of TU Delft. ‘We stress the importance of understanding the precise determinants, like the support force direction and the attachment points on the harness. Our paper investigates the exact influence of these and other factors on the production of gait."

Backward force

“As this information is critical to the design of an optimal BWS, we systematically studied these determinants for the RYSEN. A very striking result that we found is that (healthy) subjects select a small backward force when asked for their preferred BWS conditions (where a forward force was expected). Moreover, we found that with this small backwards force, the gait characteristics were closer to normal walking than without the backwards force”, says Michiel Plooij, Mechatronic System Engineer TU Delft/DEMCON.

This unexpected finding challenges the view that during human-robot interactions, humans predominantly optimize energy efficiency. Instead, they might seek to increase their feeling of stability and safety. The researchers also demonstrate that the location of the attachment points on the harness strongly impacts gait patterns, while harness attachment is hardly reported in literature.

In the future, the RYSEN can also be used in combination with floor projection....
In the future, the RYSEN can also be used in combination with floor projection. This creates a virtual reality environment, which helps in making rehabilitation as much fun as it can be given the circumstances.
Source: Delft University of Technology

Customize

Plooij: “In general, we show that a lot of scientific questions remain. We developed the RYSEN foremost as a tool for studying and supporting gait rehabilitation. When we tried to replicate previous research on device settings on the RYSEN, we found that the same device settings as in previous research led to completely different outcomes.”

Despite using apparently similar systems, the scientific data obtained by the devices are not similar. Therefore, recommendations for the optimal therapy settings have to be customized to each device. Understanding the interaction between human and BWS devices is critical in the design and use of these devices.

The research was published in Science Robotics.

Subscribe to our newsletter

Related articles

Robot-assisted therapy can help treat stroke survivors

Robot-assisted therapy can help treat stroke survivors

Exoskeleton-assisted rehabilitation can be beneficial in treating stroke survivors.

Multiple sclerosis: Exoskeleton therapy improves mobility

Multiple sclerosis: Exoskeleton therapy improves mobility

Experts at Kessler Foundation led the first pilot randomized controlled trial of robotic-exoskeleton assisted exercise rehabilitation effects on mobility, cognition, and brain connectivity in people with substantial MS-related disability.

Exoskeleton and brain-machine interface boost stroke rehab

Exoskeleton and brain-machine interface boost stroke rehab

Researchers have developed a system that combines a brain-computer interface and a robotic arm that responds to the actual intentions of treated patients.

A portable arm rehabilitation robot

A portable arm rehabilitation robot

A new portable arm rehabilitation robot will help patients to carry out robot-aided therapy at home, allowing them to perform intensive exercises without visiting hospitals or clinics.

Cerebral palsy: robotics trainer improves body control

Cerebral palsy: robotics trainer improves body control

Reseachers have developed robotic Trunk Support Trainer (TruST) that helps children with CP to sit more stably.

TWIICE One exoskeleton is a step towards independence

TWIICE One exoskeleton is a step towards independence

The new version of the TWIICE walking-assistance system is not only lighter, more comfortable and more powerful, but patients can also put it on and use it themselves.

Glove and gaming make rehabilitation fun

Glove and gaming make rehabilitation fun

A new sensor material suitable for developing a rehabilitation glove.

Virtual physiotherapist enables stroke survivors to train

Virtual physiotherapist enables stroke survivors to train

A rehabilitation device can increase the amount of arm exercises stroke patients do without professional supervision.

Nintendo Wii improves balance of stroke patients

Nintendo Wii improves balance of stroke patients

Researchers have shown that a physiotherapy program that uses the Nintendo Wii console improves functionality, balance and life activities daily routine of stroke patients.

Popular articles

Photo

The “RoboWig” untangle your hair

Nurses typically spend 18 to 40 percent of their time performing direct patient care tasks, oftentimes for many patients and with little time to spare. Personal care robots that brush your hair could provide substantial help and relief.

Subscribe to Newsletter