Robot prototype operating within a standard head coil in magnetic resonance...
Robot prototype operating within a standard head coil in magnetic resonance imaging environment.
Source: The University of Hong Kong

World’s first intra-operative MRI-guided robot for neurosurgery

An engineer designed the first neurosurgical robotic system capable of performing bilateral stereotactic neurosurgery inside a MRI scanner.

Stereotactic neurosurgery is one of the treatment to a variety of movement and neuropsychiatric disorders, such as Parkinson’s disease (PD), essential tremor and major depression. It involves a technique that can locate targets of surgical interest using an external positioning system, which is widely applied in brain biopsy, tumor ablation, drug delivery, as well as deep brain stimulation (“DBS”). Parkinson’s disease alone is the second most common disease of the nervous system after Alzheimer’s disease, and is projected to affect over 8.7 million people worldwide by 2030. As such, any improvement to this surgery would benefit a large population.

A HKU Mechanical Engineering team led by Dr. Kwok Ka-wai designed the first neurosurgical robotic system capable of performing bilateral stereotactic neurosurgery inside a MRI scanner. The team also conducted pre-clinical validation of the system with CUHK neurosurgeons, Dr Danny Chan Tat-ming and Professor Poon Wai-sang. This innovative technological breakthrough can facilitate the treatment of Parkinson’s disease and other neuropsychiatric disorders.

DBS therapy, like a heart pacemaker, can deliver electrical signals through implanted electrodes to the deep brain targets. It helps to restore normal nerve cell activity. This surgery is tremendously demanding on accuracy, by targeting only the tiny nucleus structures and not damaging the surrounding critical tissue. Without the intra-operative updates of a surgical “roadmap”, the brain may shift after the skull is opened and inevitably lowers the targeting accuracy. Conventional DBS is performed while the patient is awake under local anesthesia. Surgeons have to rely on verbal or physical interactions with the patients to ensure the electrode placement is going well. These surgical complications motivated the HKU-led team to develop a compact robot guided by MRI. This facilitates less invasive stereotactic procedures on the patient under general anesthesia, as surgeons could accurately control and evaluate the stereotactic manipulation bilaterally to the left and right brain targets in real time.

The team successfully resolved many unmet technical challenges. For example, MRI scanners have very strong magnetic fields and most metallic components are forbidden in MRI environments, including the electromagnetic (EM) motors commonly used in robots. The team has developed a totally magnetic resonance compatible tele-operated system driven by liquid. It does not generate any EM interference or affect imaging quality even during the robot operation. A manipulator is designed to perform dexterous operation towards the left-and-right brain targets, and the area required for an invasive anchorage is very small. The compact robot design can be accommodated inside a standard MRI head coil for imaging and intervention. Advanced 3-D tracking markers are also developed, which enable fast localization of robot instruments in MRI in real time.

The success of this project would represent a major step towards safer, more accurate and effective brain surgery. It is believed that all these components can be applied to other interventions requiring MRI guidance, e.g. cardiac catheterization, prostate or breast biopsy. The research team plans to conduct further clinical studies to determine the efficacy of the system.

Subscribe to our newsletter

Related articles

Robotic system for endovascular instrument guidance

Robotic system for endovascular instrument guidance

Researchers have developed a new method to guide endovascular instruments into complex vascular structures that were inaccessible to endovascular surgeons until now.

Robots with tiny lasers could soon erase regrettable tattoos

Robots with tiny lasers could soon erase regrettable tattoos

Researchers are using laser scalpels and precision robotics to make tattoo removal faster, more accurate and less painful.

Robotic technology enhances spine surgery

Robotic technology enhances spine surgery

Spine surgery: A new robotic technology increases the safety and precision of spinal fusion surgeries while reducing the time needed for the procedure.

Enhanced safety and precision with semi-automatic milling systems

Enhanced safety and precision with semi-automatic milling systems

Professor Dr Henning Windhagen is a great fan of semi-automatic systems in the OR that help with implants but leave the surgeon in the driver’s seat.

OR without surgeon: science fiction or realistic scenario?

OR without surgeon: science fiction or realistic scenario?

Dr Jan Stallkamp, Professor for Automation in Healthcare and Biotechnology, has a vision: robots that can treat patients more efficiently and more precisely than any human physician.

VisionBlender generates computer vision datasets for robotic surgery

VisionBlender generates computer vision datasets for robotic surgery

Researchers at the Hamlyn Centre, Imperial College London, have introduced a novel tool for generating accurate endoscopic datasets.

Surgery robots set to learn how to better assist

Surgery robots set to learn how to better assist

The objective of the AIMRobot project is to pave the way for the next generation of robotic surgery systems capable of autonomy.

Augmented intelligence advances robotic surgery

Augmented intelligence advances robotic surgery

TransEnterix, Inc. announced that a hospital in New Jersey successfully completed its first surgical procedures using the Intelligent Surgical UnitTM.

Smart surgery - from technical fascination to clinical reality

Smart surgery - from technical fascination to clinical reality

Artificial intelligence is developing at an enormous speed and intelligent instruments will profoundly change surgery and medical interventions.

Popular articles

Subscribe to Newsletter