A Purdue University team has come up with 3D body mapping technology to help...
A Purdue University team has come up with 3D body mapping technology to help treat organs and cells damaged by cancer and other medical issues.
Source: Purdue University
10.07.2019 •

3D body mapping could identify damaged cells

A Purdue University team has come up with 3D body mapping technology to help treat organs and cells damaged by cancer and other medical issues.

Medical advancements can come at a physical cost. Often following diagnosis and treatment for cancer and other diseases, patients’ organs and cells can remain healed but damaged from the medical condition.

In fact, one of the fastest growing medical markets is healing and/or replacing organs and cells already treated, yet that remain damaged by cancer, cardiovascular disease and other medical issues. The global tissue engineering market is expected to reach $11.5 billion by 2022. That market involves researchers and medical scientists working to repair tissues damaged by some of the world’s most debilitating cancers and diseases.

One big challenge remains for the market: how to monitor and continuously test the performance of engineered tissues and cells to replace damaged ones. Purdue University researchers have come up with a 3D mapping technology to monitor and track the behavior of the engineered cells and tissues and improve the success rate for patients who have already faced a debilitating disease. “My hope is to help millions of people in need,” said Chi Hwan Lee, an assistant professor of biomedical engineering and mechanical engineering in Purdue’s College of Engineering, who leads the research team. “Tissue engineering already provides new hope for hard-to-treat disorders, and our technology brings even more possibilities.”

The Purdue team created a tissue scaffold with sensor arrays in a stackable design that can monitor electrophysiological activities of cells and tissues. The technology uses the information to produce 3D maps to track activity. “This device offers an expanded set of potential options to monitor cell and tissue function after surgical transplants in diseased or damaged bodies,” Lee said. “Our technology offers diverse options for sensing and works in moist internal body environments that are typically unfavorable for electronic instruments.”

Lee said the Purdue device is an ultra-buoyant scaffold that allows the entire structure to remain afloat on the cell culture medium, providing complete isolation of the entire electronic instrument from the wet conditions inside the body.

Lee and his team have been working with Sherry Harbin, a professor in Purdue’s Weldon School of Biomedical Engineering, to test the device in stem cell therapies with potential applications in the regenerative treatment of diseases.

Subscribe to our newsletter

Related articles

A wearable gas sensor for health monitoring

A wearable gas sensor for health monitoring

A highly sensitive wearable gas sensor for environmental and human health monitoring may soon become commercially available.

“Band-aid” sensor patch monitors vital parameters

“Band-aid” sensor patch monitors vital parameters

Researchers have developed a patch-based health diagnosis sensor system that is easily attached to skin, like a band aid.

Wearable AC monitors vital data

Wearable AC monitors vital data

Smart shirt includes health care applications such as the ability to monitor blood pressure, electrical activity of the heart and the level of skin hydration.

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Wearable sensor to help treat swallowing disorders

Wearable sensor to help treat swallowing disorders

A wearable monitoring device to make treatments easier and more affordable for the millions of people with swallowing disorders is about to be released into the market.

Wearable sweat sensor detects Gout-causing compounds

Wearable sweat sensor detects Gout-causing compounds

Researchers describe a mass-producible wearable sensor that can monitor levels of metabolites and nutrients in a person's blood by analyzing their sweat.

Nano-based wearable electronics for mental disorder diagnosis

Nano-based wearable electronics for mental disorder diagnosis

NanoEDGE research project aims at converging production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization.

Wearables could help older people manage diabetes

Wearables could help older people manage diabetes

Older people with diabetes would benefit from using wearable glucose monitors.

Wireless oxygen sensor monitors sick infants

Wireless oxygen sensor monitors sick infants

Researchers have created a mobile, wearable device the size of a Band-Aid could allow babies to leave the hospital and be monitored from home.

Popular articles