3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

Photo
The technology combines silicone rubber with ultra-thin layers of graphene in a material ideal for making wristbands or insoles in running shoes.
Source: University of Waterloo

The new technology, developed by engineers at the University of Waterloo, combines silicone rubber with ultra-thin layers of graphene in a material ideal for making wristbands or insoles in running shoes.

When that rubber material bends or moves, electrical signals are created by the highly conductive, nanoscale graphene embedded within its engineered honeycomb structure. “Silicone gives us the flexibility and durability required for biomonitoring applications, and the added, embedded graphene makes it an effective sensor,” said Ehsan Toyserkani, research director at the Multi-Scale Additive Manufacturing (MSAM) Lab at Waterloo. “It’s all together in a single part.”

Fabricating a silicone rubber structure with such complex internal features is only possible using state-of-the-art 3D printing – also known as additive manufacturing - equipment and processes.

The rubber-graphene material is extremely flexible and durable in addition to highly conductive. “It can be used in the harshest environments, in extreme temperatures and humidity,” said Elham Davoodi, an engineering PhD student at Waterloo who led the project. “It could even withstand being washed with your laundry.”

The material and the 3D printing process enable custom-made devices to precisely fit the body shapes of users, while also improving comfort compared to existing wearable devices and reducing manufacturing costs due to simplicity.

Toyserkani, a professor of mechanical and mechatronics engineering, said the rubber-graphene sensor can be paired with electronic components to make wearable devices that record heart and breathing rates, register the forces exerted when athletes run, allow doctors to remotely monitor patients and numerous other potential applications.

Subscribe to our newsletter

Related articles

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

Micro-supercapacitors to self-power wearables

Micro-supercapacitors to self-power wearables

A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible.

Graphene – the versatile wonder material

Graphene – the versatile wonder material

Graphene has a vast variety of practical applications in the creation of new materials. But what exactly is graphene and what makes it so special?

3D printed transparent fibers can sense breath

3D printed transparent fibers can sense breath

Researchers used 3D printing techniques to make electronic fibres, each 100 times thinner than a human hair, creating sensors beyond the capabilities of conventional film-based devices.

New transparent and graphene enabled wearables

New transparent and graphene enabled wearables

Researchers have found a way to use graphene to make flexible photodetectors to measure heart rate, blood oxygen concentration, and breathing rate.

Graphene wearables for health monitoring

Graphene wearables for health monitoring

Using graphene, a company has developed a fitness band to measure heart rate, hydration, oxygen saturation, breathing rate and temperature.

Ingestible capsule can be controlled wirelessly

Ingestible capsule can be controlled wirelessly

Electronic pill can relay diagnostic information or release drugs in response to smartphone commands.

E-textiles made with new cellulose thread

E-textiles made with new cellulose thread

Researchers have developed a thread made of conductive cellulose, which offers practical possibilities for electronic textiles.

Popular articles

Subscribe to Newsletter