The device comprises a soft and thin sensor that monitors bladder volume...
The device comprises a soft and thin sensor that monitors bladder volume continuously as well as an actuator equipped with high voiding efficiency to clear the bladder completely.
Source: National University of Singapore

A sensor to improve performance of underactive bladders

Individuals with an underactive bladder, for example following a spinal cord injury, often cannot sense bladder fullness or are unable to empty the bladder completely. This distressing symptom can seriously affect one’s quality of life. A dysfunctional bladder may also lead to medical complications such as urinary tract infection, as well as physical discomfort and potential for personal embarrassment.

A team led by Professor Nitish Thakor and Dr Arab Hassani worked closely with researchers from NUS Electrical and Computer Engineering and NUS Biomedical Engineering, the SINAPSE Laboratory in the N.1 Institute for Health, as well as the team of Professor Takao Someya at the University of Tokyo. This technology that can monitor bladder volume in real time and effectively empty the bladder, along with its proof of concept, took more than a year to develop.

Soft solution for a weak bladder

Among patients who have some form of spinal cord injury, about 80 per cent of them suffer from some form of bladder dysfunction. There is currently no cure for the underactive bladder condition, and while some implantable treatment options are available, they can only sense the fullness of the bladder and only empty it up to 43 per cent. “To help these patients, what clinicians need is an integrated bladder system that achieves both volume sensing capability and high voiding efficiency. Given that the urinary bladder is unique among human organs as it undergoes large volume changes during the storage and urination phases, the device requires careful compatibility considerations to avoid interference with the extreme volume changes of the bladder,” said Prof Thakor, who supervised the research.

Dr Arab Hassani’s novel system comprises a sensor integrated with an actuator. The soft and thin sensor monitors the bladder volume continuously while the actuator is equipped with strong emptying force to clear the bladder. The actuator contains a shape memory alloy (SMA) spring, which keeps the sensor in contact with the surface of the bladder at all times for precise volume detection.

Experiments by the team showed that in addition to the real-time volume sensing capability, the device can also effectively empty between 70 to 100 per cent of the bladder. “This is a significant achievement as its performance is comparable to the efficiency of intermittent catheterisation treatment currently being used, which has many shortcomings,” shared Dr Arab Hassani, the first author of this study. “We need a soft but efficient device to support a weak bladder.”

Improvements and potential applications

Moving forward, the NUS research team is working to improve the functionality of the device, and looking into making the system wireless for ease of use and movement. “The bladder system can be adjusted to the user’s bladder size to ensure optimal operation,” suggested Dr Arab Hassani. “The ideal scenario would be to integrate the device with a mobile application, which can retrieve and process the sensor data to allow the user to trigger voiding at will.”

The team’s advances in soft materials and their fabrication techniques also hold other potential applications to treat not only the bladder dysfunction, but also to treat other organ failures in the medical field. “Our soft system demonstrated on a bladder can serve as a model for augmenting other organs as well,” elaborated Prof Thakor. “I believe this novel design can pave the way for the development of sensors and actuators that are compatible with other soft and distensible organs like blood vessels, the heart, and the gastrointestinal system, as these organs require both sensing and actuation to achieve functions like pumping and peristalsis under soft actuation and control.”

Subscribe to our newsletter

Related articles

Wireless implant detects oxygen deep within the body

Wireless implant detects oxygen deep within the body

Engineers have created a tiny wireless implant that can provide real-time measurements of tissue oxygen levels deep underneath the skin.

Soft sensors for monitoring pregnant women

Soft sensors for monitoring pregnant women

Researchers have developed three soft, flexible, wireless sensors that allow movement and provide more precise data than existing ones.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Wearable monitors jaundice-causing bilirubin in newborns

Wearable monitors jaundice-causing bilirubin in newborns

Researchers have developed the first wearable devices to precisely monitor jaundice, a yellowing of the skin caused by elevated bilirubin levels in the blood that can cause severe medical conditions in newborns.

Micro-supercapacitors to self-power wearables

Micro-supercapacitors to self-power wearables

A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible.

Sensor detects scarred or fatty liver tissue

Sensor detects scarred or fatty liver tissue

Engineers have developed a diagnostic tool, based on nuclear magnetic resonance, that could be used to detect fatty liver disease and liver fibrosis.

Powering wearable sensors through human motion

Powering wearable sensors through human motion

Researchers have harvested kinetic energy that is produced by a person as they move around.

Wearable pressure-sensitive devices

Wearable pressure-sensitive devices

Scientists have devised solutions to the problems presented in constructing wearable pressure-sensitive sensors.

Popular articles

Subscribe to Newsletter