The jumpsuit makes it possible, for the first time, to quantitatively assess...
The jumpsuit makes it possible, for the first time, to quantitatively assess children’s spontaneous movement in the natural environment.
Source: Sampsa Vanhatalo

A smart jumpsuit provides information on infants' development

The garment makes it possible, for the first time, to quantitatively assess children’s spontaneous movement in the natural environment. The study on the smart jumpsuit and the related analysis method applied to 7-month-old infants was published in the Scientific Reports journal. In the future, the jumpsuit can also be used to study older children.

The assessment of spontaneous and voluntary movements is part of the neurological examination of infants. Previously, the quantitative tracking of children's spontaneous motility in the natural environment has not been possible. Instead, children have been primarily qualitatively assessed at the physician’s or physiotherapist's practice, which requires taking into account the fact that the infant’s behaviour in the practice setting does not necessarily entirely match that seen at home. “The smart jumpsuit provides us with the first opportunity to quantify infants’ spontaneous and voluntary movements outside the laboratory. The child can be sent back home with the suit for the rest of the day. The next day, it will be returned to the hospital where the results will then be processed,” explains Sampsa Vanhatalo, professor of clinical neurophysiology at the University of Helsinki.

Vanhatalo says that the new analysis method quantifies infant motility as reliably as a human being would be able to do by viewing a video recording. After the measurement, the infant’s actual movements and physical positions will be known to the second, after which computational measures can be applied to the data. “This is a revolutionary step forward. The measurements provide a tool to detect the precise variation in motility from the age of five months, something which medical smart clothes have not been able to do until now.”

Neur­o­lo­gical ab­nor­mal­it­ies should be de­tec­ted early on

The data gleaned by the smart jumpsuit is valuable, since the detection of abnormalities in the neurological development of infants at an early stage enables early support. Brain plasticity is at its strongest in early childhood, and is benefited by measures supporting development, which are targeted at recurring everyday activities.

At least 5% of Finnish children suffer from problems associated with language development, attention regulation and motor development. Often, such problems overlap. The pathogenic mechanisms underlying developmental disorders are complex, but preterm birth, perinatal brain damage and the lack of early care, as well as insufficient stimulation in the growth environment aggravate the risk of developmental problems.

According to Leena Haataja, professor of paediatric neurology, developmental disorders in today’s pressure-dominated world pose a considerable risk that can lead to learning difficulties and obstacles in the competition for education and jobs. Furthermore, they are a risk factor associated with exclusion from contemporary society. “The early identification of developmental disorders and support for infants’ everyday functional capacity in interaction with the family and the growth environment constitute a significant factor on the level of individuals, families and society,” Haataja notes.

In the future, the smart jumpsuit can be used for the objective measurement of how various therapies and treatments affect children’s development. “This is the million-dollar question in Western healthcare. In addition, we may be able to quantify how early motor development associates with later cognitive development,” Vanhatalo says.

Subscribe to our newsletter

Related articles

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

Smart textiles measure your movements

Smart textiles measure your movements

Researchers have developed clothing that uses special fibers to sense a person's movement via touch.

E-textiles made with new cellulose thread

E-textiles made with new cellulose thread

Researchers have developed a thread made of conductive cellulose, which offers practical possibilities for electronic textiles.

Wristband predictings pediatric seizures

Wristband predictings pediatric seizures

Researchers have evaluated whether data derived solely from these wristbands could accurately predict various types of seizures in pediatric patients.

Wearable monitors jaundice-causing bilirubin in newborns

Wearable monitors jaundice-causing bilirubin in newborns

Researchers have developed the first wearable devices to precisely monitor jaundice, a yellowing of the skin caused by elevated bilirubin levels in the blood that can cause severe medical conditions in newborns.

Decentralized patient monitoring: Sensors quickly detect changes in vital signs

Decentralized patient monitoring: Sensors quickly detect changes in vital signs

The Fraunhofer Institutes project M³Infekt aims to develop a multi-modal, modular and mobile system of sensors for monitoring infectious diseases.

Ideal placement for armband to track vitals

Ideal placement for armband to track vitals

Researchers took a step forward in the development of an armband that could track the heart’s electrical activity without requiring bulky wiring or sticky gel on the skin.

Smart fabrics with bioactive inks monitor body

Smart fabrics with bioactive inks monitor body

Researchers have developed biomaterial-based inks that respond to and quantify chemicals released from the body or in the surrounding environment by changing color.

Popular articles

Subscribe to Newsletter