This biocompatible sensor is made from a non-toxic, highly conductive liquid...
This biocompatible sensor is made from a non-toxic, highly conductive liquid solution that could be used in diagnostics, therapeutics, human-computer interfaces, and virtual reality.
Source: Siyi Xu, Daniel M. Vogt, and Andreas W. Rousing/Harvard SEAS

A wearable soft sensor

Biocompatible sensor could be used in diagnostics, therapeutics, human-computer interfaces, and virtual reality.

Children born prematurely often develop neuromotor and cognitive developmental disabilities. The best way to reduce the impacts of those disabilities is to catch them early through a series of cognitive and motor tests. But accurately measuring and recording the motor functions of small children is tricky. As any parent will tell you, toddlers tend to dislike wearing bulky devices on their hands and have a predilection for ingesting things they shouldn’t.

Harvard University researchers have developed a soft, non-toxic wearable sensor that unobtrusively attaches to the hand and measures the force of a grasp and the motion of the hand and fingers. One novel element of the sensor is a non-toxic, highly conductive liquid solution. “We have developed a new type of conductive liquid that is no more dangerous than a small drop of salt water,” said Siyi Xu, a graduate student at The Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). “It is four times more conductive than previous biocompatible solutions, leading to cleaner, less noisy data.”

Harvard’s Office of Technology Development has filed a portfolio of intellectual property relating to the architecture of novel soft sensors and is seeking commercialization opportunities for these technologies.

The sensing solution is made from potassium iodide, which is a common dietary supplement, and glycerol, which is a common food additive. After a short mixing period, the glycerol breaks the crystal structure of potassium iodide and forms potassium cations (K+) and iodide ions (I-), making the liquid conductive. Because glycerol has a lower evaporation rate than water, and the potassium iodide is highly soluble, the liquid is both stable across a range of temperatures and humidity levels and highly conductive.

“Previous biocompatible soft sensors have been made using sodium chloride-glycerol solutions but these solutions have low conductivities, which makes the sensor data very noisy, and it also takes about 10 hours to prepare,” said Xu. “We’ve shortened that down to about 20 minutes and get very clean data.”

The design of the sensors also takes the need of children into account. Rather than a bulky glove, the silicon-rubber sensor sits on top of the finger and on the finger pad. “We often see that children who are born early or who have been diagnosed with early developmental disorders have highly sensitive skin,” said Eugene Goldfield, coauthor of the study and an Associate Professor in the Program in Behavioral Sciences at Boston Children’s Hospital and Harvard Medical School and Associate Faculty Member of the Wyss Institute at Harvard University. “By sticking to the top of the finger, this device gives accurate information while getting around the sensitively of the child’s hand.”

Goldfield and his colleagues currently study motor function using the Motion Capture Lab at SEAS and Wyss. While motion capture can tell a lot about movement, it cannot measure force, which it critical to diagnosing neuromotor and cognitive developmental disabilities. “Early diagnosis is the name of the game when it comes to treating these developmental disabilities and this wearable sensor can give us a lot of advantages not currently available,” said Goldfield.

This paper only tested the device on adult hands. Next, the researchers plan to scale down the device and test it on the hands of children. “The ability to quantify complex human motions gives us an unprecedented diagnostic tool,” says Rob Wood, the Charles River Professor of Engineering and Applied Sciences at SEAS, Founding Core Faculty Member of the Wyss Institute, and senior author of the study. “The focus on the development of motor skills in toddlers presents unique challenges for how to integrate many sensors into a small, lightweight, and unobtrusive wearable device. These new sensors solve these challenges – and if we can create wearable sensors for such a demanding task, we believe that this will also open up applications in diagnostics, therapeutics, human-computer interfaces, and virtual reality.”

Subscribe to our newsletter

Related articles

An all-in-one health monitor

An all-in-one health monitor

Engineers have developed a skin patch that can continuously track blood pressure and heart rate while measuring the wearer’s levels of glucose as well as lactate.

3D printed transparent fibers can sense breath

3D printed transparent fibers can sense breath

Researchers used 3D printing techniques to make electronic fibres, each 100 times thinner than a human hair, creating sensors beyond the capabilities of conventional film-based devices.

Wearable sensors made from microbial nanocellulose

Wearable sensors made from microbial nanocellulose

Researchers have created a wearable sensor printed on microbial nanocellulose, a natural polymer.

Attachable skin patches that wick the sweat away?

Attachable skin patches that wick the sweat away?

Scientists have developed a new preparation technique that could reduce the redness and itching caused by the trapped sweat beneath them.

Sustainable solution for wearable patches

Sustainable solution for wearable patches

Covestro has developed a concept for wearable smart patches in cooperation with its partner accensors.

Microfluidic sensor rapidly measures lactate concentration

Microfluidic sensor rapidly measures lactate concentration

Scientists have developed a soft and nonirritating microfluidic sensor for the real-time measurement of lactate concentration in sweat.

Sensor detects signs of burnout in sweat

Sensor detects signs of burnout in sweat

Engineers have developed a wearable sensing chip that can measure the concentration of cortisol – the stress hormone – in human sweat.

Sensor rapidly detects multiple sepsis biomarkers

Sensor rapidly detects multiple sepsis biomarkers

The Wyss Institute's eRapid electrochemical sensor technology now enables specific and multiplexed detection of blood biomarkers at low cost.

Biodegradable displays for sustainable sensors

Biodegradable displays for sustainable sensors

Scientists have developed biodegradable displays that due to their flexibility and adhesion can be worn directly on the hand.

Popular articles