A smart wearable real-time diagnosis sensor applying complex nature-mimicking...
A smart wearable real-time diagnosis sensor applying complex nature-mimicking structure.
Source: DGIST

“Band-aid” sensor patch monitors vital parameters

Scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Sungkyunkwan University in Korea have developed a patch-based health diagnosis sensor system that is easily attached to skin, like a band aid. The sensor collects various health information in real-time by monitoring biosignals and certain movements.

The research was conducted by Professor Hyuk-Jun Kwon in the Department of Information and Communication Engineering at DGIST, in conjunction with Professor Sunkook Kim’s research team at Sungkyunkwan University.

Research on wearable healthcare devices has been actively conducted with the well-being era. However, product developments have faced many difficulties due to barriers in collecting biometric information such as body movements, sweats, and secretions. Professor Kwon’s team focused on developing sensors that can collect stable biometric data from various situations including intense workouts and emergencies.

As a result, the research team has successfully developed precise structures for daily life using laser and increased the stability of sensor that collects biometric information. Inspired by the crooked movements of snakes and spider webs, Professor Kwon’s team created a stable structure for sensors to operate without damage despite huge body movements. Moreover, the team greatly improved the vertical elasticity of the sensors by applying the zigzag paper craft structure, so that sensors endure intense body movements.

The patch-based sensor developed this time was made of a biometric-friendly waterproof material, thus improving the difficulties in acquiring accurate information due to the skin-attachment problem. In addition, the sensor can also be connected to smartphone using Bluetooth, so biometric data can be saved to a cloud server 24/7. This will enable making timely response to various emergencies such as infants, young children, and elders living alone who are need care as well as soldiers and firefighters who are constantly exposed to dangerous environments.

Professor Kwon said that “The key for this sensor development was securing structural stability and skin adhesion that can endure very intensive physical movements. The sensor is very useful because as long as it is attached to skin like a band-aid, it can collect various biodata information. It is expected to be applied to observe and monitor animal and livestock diseases as well in the future.”

Subscribe to our newsletter

Related articles

Electronic skin – the next generation of wearables

Electronic skin – the next generation of wearables

Electronic skins will play a significant role in monitoring, personalized medicine, prosthetics, and robotics.

Wearables must demonstrate efficacy in respiratory care

Wearables must demonstrate efficacy in respiratory care

Wearables are becoming a trend in respiratory care and many products are being developed to monitor patients remotely. But how much can these tools really help clinicians?

Smart bandage shows promise for wound management

Smart bandage shows promise for wound management

Wearable sensor detects multiple chronic wound biomarkers to facilitate timely and personalised wound care.

No needles required for glucose levels monitoring

No needles required for glucose levels monitoring

Researchers have developed a first-of-its-kind wearable, noninvasive glucose monitoring device prototype.

3D printed werables never need to charge

3D printed werables never need to charge

Engineers have developed a new type of wearable device that is 3D printed to custom fit the wearer.

A wearable sensor for neonatal seizure monitoring

A wearable sensor for neonatal seizure monitoring

Hongyu Chen has developed a wearable sensor system for the continuous monitoring of neonatal seizures.

Wearable devices in the surgical environment

Wearable devices in the surgical environment

In surgery, wearable technologies can assist, augment, and provide a means of patient assessment before, during and after surgical procedures.

Wearables made with laser-induced graphene

Wearables made with laser-induced graphene

Graphene could advance flexible electronics according to a Penn State-led international research team.

‘Smart’ shirt keeps tabs on the heart

‘Smart’ shirt keeps tabs on the heart

A flexible carbon nanotube fibers can be incorporated into clothing to function as wearable health monitors.

Popular articles

Subscribe to Newsletter