DNA-stabilized metal quantum clusters belong to a novel class of biological...
DNA-stabilized metal quantum clusters belong to a novel class of biological nanomaterials and, in the future, could be used as highly sensitive, cost-effective biosensors. With their fluorescence properties researchers could detect diseases quickly and reliably procedures can start at an early stage.
Source: Fraunhofer ISC

BioSensing: Detecting pathogens using quantum technology

The project “BioSensing” from Fraunhofer ISC aims to overcome the limits of modern biosensors with the help of quantum technology.

Safe diagnoses of diseases, identification of multidrug-resistant germs, detection of beginning epidemics at an early stage or detection of toxins and pathogens in drinking water and food in even the lowest concentrations – these are major challenges and goals of current research programs. One of the most promising tools for these tasks are novel and considerably improved biosensors. The project “BioSensing” of the Fraunhofer Institutes for Silicate Research ISC and for Molecular Biology and Applied Ecology IME and the Leiden University, Institute of Physics aims to overcome the limits of modern biosensors with the help of quantum technology.

Medical diagnoses could be even more reliable and efficient with the use of biosensors, but researchers face great challenges. The sensors should be sufficiently sensitive to detect even the smallest amounts of pathogens in the blood or other biological fluids. At the same time, they should be able to identify even difficult-to-diagnose diseases in real time so that effective therapy procedures can start at an early stage.

These tasks are to be mastered with novel biosensors based on quantum effects in the project “BioSensing”. The project focuses on a novel class of biological nanomaterials, so-called DNA-stabilized metal quantum clusters (QC-DNA), which are used as “quantum biosensors”. In their simplest form, these biosensors consist of a short DNA sequence that encloses a group of six to fifteen metal atoms called metal cluster. The choice of DNA sequence determines the sensor characteristics and which disease is detected. The basic structure of a quantum biosensor can be extended by additional specific biomolecules and thus be used for the detection of selected biomarkers.

But how do researchers recognize that a quantum biosensor has detected a specific disease? They use the fluorescence properties of the metal cluster. If a successful detection has taken place, the wavelength of the light emitted by the metal clusters changes. QC-DNA are suitable for the development of highly sensitive sensors in biological systems and provide solutions for an advanced, intelligent and affordable therapy.

But such a quantum biosensor not only responds to diseases (caused by germs or even mutations in the genome), but also to changing environmental conditions, such as an increase of salt concentrations. Further applications are possible such as the monitoring of food and forage or the use in environmental analysis. A significant advantage is the cost-effective production of quantum biosensors.

So far, tests were limited to the lab, but the project partners of Fraunhofer ISC, IME and Leiden University in the Netherlands have set themselves the goal of designing various quantum biosensors, scaling them up to pilot scale and preparing them for feasibility studies in university hospitals. In follow-up projects, the partners plan to develop a portable read-out device that works cost-effectively, highly sensitively, quickly and reliably and detects various pathogens, toxins or cancer cells.

Subscribe to our newsletter

Related articles

virtual.COMPAMED receives international resonance

virtual.COMPAMED receives international resonance

COMPAMED 2020 took place entirely online due to the pandemic - but still won over their audiences due to their high degree of international resonance in this format too.

Face mask detects Covid-19 infection

Face mask detects Covid-19 infection

Engineers have designed a novel face mask that can diagnose the wearer with Covid-19 within about 90 minutes.

Quantum microscope can see the impossible

Quantum microscope can see the impossible

In a major scientific leap, researchers have created a quantum microscope that can reveal biological structures that would otherwise be impossible to see.

New class of quantum dots primed for imaging

New class of quantum dots primed for imaging

A new class of quantum dots opens a range of practical applications, including medical imaging and diagnostics and quantum communication.

Microfluidic chip simplifies COVID-19 testing

Microfluidic chip simplifies COVID-19 testing

COVID-19 can be diagnosed in 55 minutes or less with the help of programmed magnetic nanobeads and a diagnostic tool that plugs into an off-the-shelf cellphone.

Sensor rapidly detects multiple sepsis biomarkers

Sensor rapidly detects multiple sepsis biomarkers

The Wyss Institute's eRapid electrochemical sensor technology now enables specific and multiplexed detection of blood biomarkers at low cost.

Biosensors quickly spot coronavirus proteins, antibodies

Biosensors quickly spot coronavirus proteins, antibodies

Scientists have created a new way to detect the proteins that make up the pandemic coronavirus, as well as antibodies against it.

A bifunctional biosensor detects COVID-19

A bifunctional biosensor detects COVID-19

How fast could SARS-CoV-2 be detected? Researchers have developed an accurate, high-speed, and portable detector for COVID-19.

Nano-thin piezoelectrics advance wearables

Nano-thin piezoelectrics advance wearables

A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats.

Popular articles

Subscribe to Newsletter