This unique biosensing platform consists of an array of ultrathin graphene...
This unique biosensing platform consists of an array of ultrathin graphene layers and gold nanostructures. The platform, combined with high-tech imaging (Raman spectroscopy), detects genetic material (RNA) and characterizes different kinds of stem cells with greater reliability, selectivity and sensitivity than today’s biosensors.
Source: Letao Yang, KiBum Lee, Jin-Ho Lee and Sy-Tsong (Dean) Chueng

Biosensor may help guide treatment of Alzheimer’s

A Rutgers-led team has created better biosensor technology that may help lead to safe stem cell therapies for treating Alzheimer’s and Parkinson’s diseases and other neurological disorders.

The technology, which features a unique graphene and gold-based platform and high-tech imaging, monitors the fate of stem cells by detecting genetic material (RNA) involved in turning such cells into brain cells (neurons).

Stem cells can become many different types of cells. As a result, stem cell therapy shows promise for regenerative treatment of neurological disorders such as Alzheimer’s, Parkinson’s, stroke and spinal cord injury, with diseased cells needing replacement or repair. But characterizing stem cells and controlling their fate must be resolved before they could be used in treatments. The formation of tumors and uncontrolled transformation of stem cells remain key barriers.

“A critical challenge is ensuring high sensitivity and accuracy in detecting biomarkers – indicators such as modified genes or proteins – within the complex stem cell microenvironment,” said senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University–New Brunswick. “Our technology, which took four years to develop, has demonstrated great potential for analyzing a variety of interactions in stem cells.”

The team’s unique biosensing platform consists of an array of ultrathin graphene layers and gold nanostructures. The platform, combined with high-tech imaging (Raman spectroscopy), detects genes and characterizes different kinds of stem cells with greater reliability, selectivity and sensitivity than today’s biosensors.

The team believes the technology can benefit a range of applications. By developing simple, rapid and accurate sensing platforms, Lee’s group aims to facilitate treatment of neurological disorders through stem cell therapy.

Stem cells may become a renewable source of replacement cells and tissues to treat diseases including macular degeneration, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis and rheumatoid arthritis, according to the National Institutes of Health.

Subscribe to our newsletter

Related articles

Supercharged bandages to revolutionise chronic wound treatment

Supercharged bandages to revolutionise chronic wound treatment

Plasma-coated bandages could revolutionise the treatment of chronic wounds such as pressure, diabetic or vascular ulcers that won't heal on their own.

Graphene sensors monitor food safety

Graphene sensors monitor food safety

Researchers are using high-resolution printing technology and the unique properties of graphene to make low-cost biosensors to monitor food safety and livestock health.

Magnetic nanopropellers deliver genetic material to cells

Magnetic nanopropellers deliver genetic material to cells

Researchers at the Max Planck Institute for Intelligent Systems in Germany have developed powerful nanopropellers that can be steered into the interior of cells to deliver gene therapy.

Microscopic particles offer treatment for skin diseases

Microscopic particles offer treatment for skin diseases

Researchers used a skin cream infused with microscopic particles, named STAR particles, for therapy of Skin diseases

Therapies without drugs

Therapies without drugs

Researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease.

A precision chip recreates blood-brain barrier

A precision chip recreates blood-brain barrier

Researchers at Georgia Tech have now developed a chip that accurately replicates its function using the human cells that form this important part of our anatomy.

Parkinson’s: Patient treated with Deep Brain Stimulation device

Parkinson’s: Patient treated with Deep Brain Stimulation device

The first Parkinson's patient worldwide was treated with a new neurostimulator, which enables better, more personalized care for patients.

Artificial neurons developed to cure chronic diseases

Artificial neurons developed to cure chronic diseases

For the first time researchers successfully reproduced the electrical properties of biological neurons onto semiconductor chips.

Using CRISPR to detect diseases

Using CRISPR to detect diseases

Researchers present sensor prototype that can rapidly, precisely, and cost-effectively measure molecular signals for cancer.

Popular articles