Biosensors open up paths to treatments

Self-powered biosensors that could one day lead to wearable devices that do not need to be recharged, or even sensors that are powered by the very bodily process they are designed to monitor.

Photo
Researchers are exploring the development of stretchable biosensors that could one day lead to wearable devices that do not need to be recharged, or even sensors that are powered by the very bodily process they are designed to monitor.

Wearable and implantable devices are currently used for a variety of functions, including health tracking and monitoring. However, supplying energy usually requires cumbersome batteries and downtime due to recharging. Now, an international team of researchers suggests that advances in materials and electronic design may be able to convert biomechanical energy into electric energy, paving the way for devices that can be worn and implanted but do not require constant recharging, according to Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Department of Engineering Science and Mechanics. “In this particular review, we are looking at possible energy supply without the need for batteries and other components, so it’s of particular interest to create these energy harvesters for self-powered devices, or ones that could also be used to charge up a battery,” said Cheng.

Cheng said the team reviewed the field from two perspectives: creating devices that can harvest energy, and developing sensors that can power themselves. He said that an energy harvester can create energy to power other devices, while self-powered sensors can provide their own energy to serve as stand-alone devices. Cheng added that, in some cases, the motion that generates the energy for the sensor may also be the data that the sensor is trying to collect. “It can serve as a sensor directly because it can harvest energy, so it can provide the capability to monitor the motion — for example the heartbeat — or whatever the sensor is applied to, and then it can transmit that information from the environment, or from the body, so it can be analyzed,” said Cheng. 

These biosensors could lead to more precise healthcare and remote health opportunities.

The researchers said that stretchable piezoelectric materials — which are solid substances that can accumulate electrical charges — are critical to this development. Because human tissues are soft and constantly changing shape, the materials need to be able to flex and stretch as these tissues flex and move. “These devices could include wearables on the skin surface,” said Cheng. “For these types of devices, we can capture information from the skin surface in the form of blood flow, heartbeat, respiration rate and similar movements that create vibrations.”

With new materials, the flexing motion of moving muscles, which typically are a hindrance for often-rigid wearable devices, could actually help create the energy that would then be captured and used as power by these biosensors.

However, according to the researchers, biosensors may not just be relegated to the skin surface, but could one day be implanted in the body. According to Cheng, advances in material design and development in the last decade have helped researchers develop piezoelectric materials that are flexible and rugged enough that they can withstand the environment inside the body, yet are so sensitive and efficient that they can capture and convert very minute motions, such as heartbeats and respiration.

“That’s the amazing thing about these devices, people think that these types of motion are very minimal and don’t think about harvesting this energy,” said Cheng. “It was in the past decade or two when people began to see the possibilities to generate rather large signals from these movements through the high-efficiency circuits and also to use the high-efficiency rectifying circuit, which would consume a lot of energy if it isn’t designed correctly.”

The team is also eyeing creating sensors that can perform double duty — they can harvest energy from the very bodily processes they have been designed to monitor. For example, a sensor could harvest energy from heartbeats and also transfer the information on the heart to doctors who are monitoring a patient’s cardiovascular condition.

Because computational resources are needed to create accurate models for achieving these high-performance devices, Cheng expects that advanced computational systems, such as the ones provided by ICDS-ACI, will be needed for future work.

Yabin Liao, assistant professor of engineering, mechanical engineering technology, Penn State, added that analyzing past approaches for designing stretchable energy harvesters and self-powered sensors can help researchers address current-day design challenges. “Accurate models provide a useful platform for analytical and numerical analysis of system behaviors, and allows design optimization of system parameters,” said Liao. “We summarized the working principle and representative models of flexible piezoelectric sensors and energy harvesters, and discussed their unique characteristics as compared to conventional devices. We also provided an important perspective on the connection between these and conventional models, yielding a deeper understanding of their behavior at the system level.”

The research is published in Science Direct.

Subscribe to our newsletter

Related articles

3D printed transparent fibers can sense breath

3D printed transparent fibers can sense breath

Researchers used 3D printing techniques to make electronic fibres, each 100 times thinner than a human hair, creating sensors beyond the capabilities of conventional film-based devices.

Wearable sensor for patients with inflammatory bowel disease

Wearable sensor for patients with inflammatory bowel disease

Researchers have designed a wearable device that monitors sweat for biomarkers that could signal flare-ups of inflammatory bowel disease (IBD).

Parylene photonics enable optical biointerfaces

Parylene photonics enable optical biointerfaces

Scientists have invented an optical platform that will likely become the new standard in optical biointerfaces.

Wearable sensor tracks biochemical data

Wearable sensor tracks biochemical data

Scientist are developing a patch that monitors the sweat of high performance athletes for medical information.

Smart contact lenses diagnose and treat diabetes

Smart contact lenses diagnose and treat diabetes

Researchers developed wirelessly driven ‘smart contact lens’ technology that can detect diabetes and further treat diabetic retinopathy just by wearing them.

Wearable biosensors may pave the way for personalized health

Wearable biosensors may pave the way for personalized health

Penn State engineers say computational power is key to technology for smart bandages, health tattoos and artificial organs.

Wearable sensor to help treat swallowing disorders

Wearable sensor to help treat swallowing disorders

A wearable monitoring device to make treatments easier and more affordable for the millions of people with swallowing disorders is about to be released into the market.

Wearable sensors help with wound healing process

Wearable sensors help with wound healing process

Researchers have developed skin-inspired electronics to conform to the skin, allowing for long-term, high-performance, real-time wound monitoring in users.

A wearable soft sensor

A wearable soft sensor

Biocompatible sensor could be used in diagnostics, therapeutics, human-computer interfaces, and virtual reality.

Popular articles