COVID-19: Sensor rapidly detects severity and immunity
Source: Caltech

COVID-19: Sensor rapidly detects severity and immunity

Researchers at the California Institute of Technology (Caltech) have developed a low-cost multiplex test that can rapidly provide three different types of data on COVID-19.

One feature of the COVID-19 virus that makes it so difficult to contain is that it can be easily spread to others by a person who has yet to show any signs of infection. The carrier of the virus might feel perfectly well and go about their daily business—taking the virus with them to work, to the home of a family member, or to public gatherings.

A crucial part of the global effort to stem the spread of the pandemic, therefore, is the development of tests that can rapidly identify infections in people who are not yet symptomatic.

Now, Caltech researchers have developed a new type of multiplexed test (a test that combines multiple kinds of data) with a low-cost sensor that may enable the at-home diagnosis of a COVID infection through rapid analysis of small volumes of saliva or blood, without the involvement of a medical professional, in less than 10 minutes.

Photo
When attached to supporting electronics, the sensor can wirelessly transmit data to the user's cell phone through Bluetooth.
Source: Caltech

The research was conducted in the lab of Wei Gao, assistant professor in the Andrew and Peggy Cherng department of medical engineering. Previously, Gao and his team have developed wireless sensors that can monitor conditions such as gout, as well as stress levels, through the detection of extremely low levels of specific compounds in blood, saliva, or sweat.

Gao's sensors are made of graphene, a sheet-like form of carbon. A plastic sheet etched with a laser generates a 3D graphene structure with tiny pores. Those pores create a large amount of surface area on the sensor, which makes it sensitive enough to detect, with high accuracy, compounds that are only present in very small amounts. In this sensor, the graphene structures are coupled with antibodies, immune system molecules that are sensitive to specific proteins, like those on the surface of a COVID virus, for example.

Previous versions of the sensor were impregnated with antibodies for the hormone cortisol, which is associated with stress, and uric acid, which at high concentrations causes gout. The new version of the sensor, which Gao has named SARS-CoV-2 RapidPlex, contains antibodies and proteins that allow it to detect the presence of the virus itself; antibodies created by the body to fight the virus; and chemical markers of inflammation, which indicate the severity of the COVID-19 infection.

Photo
An artist's rendering showing how the sensor contains areas that each detect a different indicator of a COVID-19 infection.
Source: Caltech

"This is the only telemedicine platform I've seen that can give information about the infection in three types of data with a single sensor," Gao says. "In as little as a few minutes, we can simultaneously check these levels, so we get a full picture about the infection, including early infection, immunity, and severity."

Established COVID-testing technologies usually take hours or even days to produce results. Those technologies also require expensive, complicated equipment, whereas Gao's system is simple and compact.

So far, the device has been tested only in the lab with a small number of blood and saliva samples obtained for medical research purposes from individuals who have tested positive or negative for COVID-19. Though preliminary results indicate that the sensor is highly accurate, a larger-scale test with real-world patients rather than laboratory samples must be performed, Gao cautions, to definitively determine its accuracy.

With the pilot study now completed, Gao next plans to test how long the sensors last with regular use, and to begin testing them with hospitalized COVID-19 patients. Following in-hospital testing, he would like to study the suitability of the tests for in-home use. Following testing, the device will need to receive regulatory approval before it is available for widespread use at home. "Our ultimate aim really is home use," he says. "In the following year, we plan to mail them to high-risk individuals for at-home testing. And in the future, this platform could be modified for other types of infectious disease testing at home."

Subscribe to our newsletter

Related articles

Smart ring detects COVID-19 early

Smart ring detects COVID-19 early

According to new research, the Oura smart ring is indeed suitable for detecting COVID-19 infection up to three days before symptoms appear.

Holographic imaging to detect viruses

Holographic imaging to detect viruses

A new approach using holographic imaging to detect both viruses and antibodies has the potential to aid in medical diagnoses and, specifically, those related to the COVID-19 pandemic.

UV light disinfection could prevent virus spread

UV light disinfection could prevent virus spread

A device capable of automatically disinfecting common surfaces could be a vital tool in virus and disease mitigation during and after the COVID-19 pandemic.

mhealth: Bluetooth to detect COVID-19 cases

mhealth: Bluetooth to detect COVID-19 cases

Researchers concluded that Bluetooth technology is ideal for detecting possible COVID-19 cases through smartphone contact tracing.

Nanotechnology provides rapid visual detection of COVID-19

Nanotechnology provides rapid visual detection of COVID-19

Scientists have developed an experimental diagnostic test for COVID-19 that can visually detect the presence of the virus in 10 minutes.

Using machine learning to estimate COVID-19’s seasonal cycle

Using machine learning to estimate COVID-19’s seasonal cycle

Scientists are launching a project to apply machine learning methods to assess the role of climate variables in disease transmission

A novel swab design to augment COVID-19 testing

A novel swab design to augment COVID-19 testing

Scientists have developed a novel test swab that can be 3D printed using inexpensive, widely available materials and speedily assembled in a range of fabrication settings.

Wearable tracks COVID-19 key symptoms

Wearable tracks COVID-19 key symptoms

Researchers have developed a wearable device to catch early signs and symptoms associated with COVID-19 and to monitor patients as the illness progresses.

Fighting infectious diseases using AI

Fighting infectious diseases using AI

Researchers have developed an artificial intelligence platform to dramatically increase the efficiency of drug combination therapies.

Popular articles