On the glass slide are highly sensitive gas sensors from the 3D printer.
On the glass slide are highly sensitive gas sensors from the 3D printer.
Source: Julia Siekmann, Kiel University

Diabetes: 3D printed sensors for breath tests

The production of highly sensitive sensors is a complex process: it requires many different steps and the almost dust-free environment of special cleanrooms. A research team from Materials Science at Kiel University (CAU) and from Biomedical Engineering at the Technical University of Moldova has now developed a procedure to produce extremely sensitive and energy-efficient sensors using 3D printing.

The simple and cost-effective production method is also suitable for industrial production, the team recently explained in the renowned specialist journal Nano Energy. Their sensor is able to precisely measure the concentration of acetone vapor using a special structuring at nano level. As the acetone concentration in the breath correlates with blood sugar levels, the research team hopes to have made a step towards producing a breath test for diabetics that could replace the daily checking of their blood sugar levels by finger pricks.

The special surface of the new sensors is visible under a high-resolution electron microscope: molecules of gases like acetone are particularly easily entangled in a thicket of nanowires around just 20 nanometres in diameter. The nano-wires-spikes increase the size of the sensor surface and so create its high level of sensitivity. “To make this special structure we heat simple microparticles of metal until numerous fine nanowires and nanospikes form on them. With a specially developed ink we can apply these particles with precision to various surfaces using a 3D printer,” said Leonard Siebert, explaining what is known as “Direct Ink Writing”. As a doctoral researcher in the “Functional Nanomaterials” working group at the CAU, he is researching additive production technologies as 3D printing, among other things.

Multi-faceted procedure for acetone and other gases

Photo
The sensor surface under the microscope: the research team grows tiny wires and spikes from metallic microparticles that are particularly good at trapping gas molecules.
Source: Functional Nanomaterials working group

Due to their special sensor concept the automatised 3D printing process presented in the study can be performed in normal ambient air. In this way, several sensors are created at the same time within a few minutes, something which used to take a couple of hours in cleanrooms. The starting material can also be varied in a targeted manner, changing the size and structure and enabling the detection of a certain gas. “This is still, first and foremost, basic research, but this principle could be used in the future to develop sensors for hydrogen or other explosive and hazard gases,” Professor Rainer Adelung, head of the working group at Kiel University, is convinced.

The metal particles as the starting material for the sensors have to be of a certain size in order to form the special wires and nanospikes. “The correct and high ratio between surface and volume is crucial,” explained Dr Oleg Lupan from Biomedical Engineering at the Technical University of Moldova. As a Humboldt fellow, he researched this process for six months as part of the working group in Kiel. What is advantageous for the sensitivity of the sensors proves to be a challenge when it comes to their production: whilst smaller particles can be applied to surfaces easily using established techniques such as spraying or vacuum evaporation systems, the microparticles used here are already too large for this. “For this reason, we considered to use 3D printers to apply the micro-particles,” said materials scientist Siebert. “The knowledge of materials and devices of colleagues from the Technical University of Moldova and our experience in nanomaterials and 3D printing complement each other perfectly here.”

Energy efficiency enables mobile applications

When organic molecules meet the numerous wires in the finished sensor, they react strongly to one another. By doing so, they change the resistance of the sensor and release clearly measurable signals. In principle, however, only a very small volume of electricity passes through the thin wires. “So our sensors only use very little energy,” explained Lupan. “This makes small portable measuring devices conceivable, too, which can be read directly via smartphone, for example.”

The researchers hope this could enable future use of the sensors in mobile, portable breath tests for diabetics. Instead of checking their blood sugar levels by finger prick several times a day, diabetics could measure the acetone content of their breath. The metabolic product is created when there is a lack of insulin and is emitted via the breath. The highly sensitive sensors could determine acetone values of under 1 ppm (particles per million air molecules), reported the study, while the breath of people with diabetes type I or II has an acetone content of more than 2 ppm.

Subscribe to our newsletter

Related articles

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Laser sensor analyses blood without

Laser sensor analyses blood without

A photonics tech company from Vilnius are on their path to solve the 50-year-old task of making non-invasive blood analysis possible.

Nanocellulose sensors: wood on our skin

Nanocellulose sensors: wood on our skin

Researchers have now produced a novel flexible sensor that lies on the skin surface and is biocompatible because it is made of nanocellulose.

Optical probe could improve breast cancer removal

Optical probe could improve breast cancer removal

Researchers have developed the first wearable probe that enhances the sense of touch by imaging and quantifying the elasticity of biological tissue.

New early detection sensor for type 1 diabetes

New early detection sensor for type 1 diabetes

Researchers are developing early detection technology for Type 1 diabetes that can accurately predict if a child is at risk of the chronic disease.

Smart insole could detect an infection

Smart insole could detect an infection

Researchers are working on a smart insole that flags changes in a patient’s gait, activity level and balance, as well as monitors for the localized increase in heat that can reveal a building infection before the human eye can spot it.

Combining wearables and AI to predict the onset of health problems

Combining wearables and AI to predict the onset of health problems

A team found that applying artificial intelligence to the right combination of data retrieved from wearable technology may detect whether your health is failing.

Wearable devices set to diagnose preeclampsia or epilepsy

Wearable devices set to diagnose preeclampsia or epilepsy

Transforming how common health conditions are diagnosed using point-of-care and wearable bio diagnostic devices is the goal of a new University of South Australia project.

Nano-sensors help with diabetes treatment

Nano-sensors help with diabetes treatment

Researchers have used printed, ultra-thin, and highly sensitive nanocomposite sensors for the treatment of patients in whom the blood sugar level is abnormally high (diabetes mellitus).

Popular articles