An electronic glove can be worn over a prosthetic hand to provide humanlike...
An electronic glove can be worn over a prosthetic hand to provide humanlike softness, warmth, appearance and sensory perception.
Source: Purdue University

E-glove makes prosthetics more humanlike

People with hand amputations experience difficult daily life challenges, often leading to lifelong use of a prosthetic hands and services. An electronic glove, or e-glove, developed by Purdue University researchers can be worn over a prosthetic hand to provide humanlike softness, warmth, appearance and sensory perception, such as the ability to sense pressure, temperature and hydration.

While a conventional prosthetic hand helps restore mobility, the new e-glove advances the technology by offering the realistic human handlike features in daily activities and life roles, with the potential to improve their mental health and well-being by helping them more naturally integrate into social contexts.

The e-glove uses thin, flexible electronic sensors and miniaturized silicon-based circuit chips on the commercially available nitrile glove. The e-glove is connected to a specially designed wristwatch, allowing for real-time display of sensory data and remote transmission to the user for post-data processing.

Chi Hwan Lee, an assistant professor in Purdue’s College of Engineering, in collaboration with other researchers at Purdue, the University of Georgia and the University of Texas, worked on the development of the e-glove technology. “We developed a novel concept of the soft-packaged, sensor-instrumented e-glove built on a commercial nitrile glove, allowing it to seamlessly fit on arbitrary hand shapes,” Lee said. “The e-glove is configured with a stretchable form of multimodal sensors to collect various information such as pressure, temperature, humidity and electrophysiological biosignals, while simultaneously providing realistic human hand-like softness, appearance and even warmth.”

Lee and his team hope that the appearance and capabilities of the e-glove will improve the well-being of prosthetic hand users by allowing them to feel more comfortable in social contexts. The glove is available in different skin tone colors, has lifelike fingerprints and artificial fingernails. “The prospective end user could be any prosthetic hand users who have felt uncomfortable wearing current prosthetic hands, especially in many social contexts,” Lee said.

The fabrication process of the e-glove is cost-effective and manufacturable in high volume, making it an affordable option for users unlike other emerging technologies with mind, voice and muscle control embedded within the prosthetic at a high cost. Additionally, these emerging technologies do not provide the humanlike features that the e-glove provides.

Lee and Min Ku Kim, an engineering doctoral student at Purdue and a co-author on the paper, have worked to patent the technology with the Purdue Research Foundation Office of Technology Commercialization. The team is seeking partners to collaborate in clinical trials or experts in the prosthetics field to validate the use of the e-glove and to continue optimizing the design of the glove. “My group is devoted to developing various wearable biomedical devices, and my ultimate goal is to bring these technologies out of the lab and help many people in need. This research represents my continued efforts in this context,” Lee said.

Subscribe to our newsletter

Related articles

Electronic skin reacts to pain like human skin

Electronic skin reacts to pain like human skin

Researchers have developed electronic artificial skin that reacts to pain just like real skin, opening the way to better prosthetics, smarter robotics and non-invasive alternatives to skin grafts.

An ultra-thin wearable device

An ultra-thin wearable device

Researchers reported the discovery of a multifunctional ultra-thin wearable electronic device that is imperceptible to the wearer.

Wireless sensors are impacting prosthetics

Wireless sensors are impacting prosthetics

Researchers have teamed up to develop wireless sensors to improve the performance of prosthetics for individuals with upper limb amputations.

Sensor-packed glove learns signatures of the human grasp

Sensor-packed glove learns signatures of the human grasp

Wearing a sensor-packed glove while handling a variety of objects, researchers have compiled a massive dataset that enables an AI system to recognize objects through touch alone.

Spray coated tactile sensor for robots and prosthetics

Spray coated tactile sensor for robots and prosthetics

Robots will be able to conduct a wide variety of tasks as well as humans if they can be given tactile sensing capabilities.

Are “e-whiskers” the touchstone for the future of “e-skin”?

Are “e-whiskers” the touchstone for the future of “e-skin”?

Resеarchers have created аrtificial "e-whiskers" which mimic thе prоpеrties of thе reаl thing.

Patches detect when a viral disease is getting worse

Patches detect when a viral disease is getting worse

Xsensio has been awarded CHF 1.8 million in EU funding to adapt its Lab-on-Skin sensing patches so that they can detect when a viral illness like the flu or COVID-19 is about to get worse.

Diabetes: Painless paper patch test uses microneedles

Diabetes: Painless paper patch test uses microneedles

Researchers have developed a microneedle patch for monitoring glucose levels using a paper sensor.

Withings’ wearable receives medical CE marking

Withings’ wearable receives medical CE marking

Withings announced the European availability of ScanWatch after receiving the CE marking for medical devices.

Popular articles