Flexible silk-based coil has been sewn onto a smart textile and is capable of...
Flexible silk-based coil has been sewn onto a smart textile and is capable of harvesting energy from radio and Wi-Fi signals in the environment.
Source: Purdue University photo/Rebecca McElhoe

Forget wearables: smart fabrics to monitor health

Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile.

In the near future, all your clothes will become smart. These smart clothes will outperform conventional passive garments, thanks to their miniaturized electronic circuits and sensors, which will allow you to seamlessly communicate with your phone, computer, car and other machines. This smart clothing will not only make you more productive but also check on your health status and even call for help if you suffer an accident. The reason why this smart clothing is not all over your closet yet is that the fabrication of this smart clothing is quite challenging, as clothes need to be periodically washed and electronics despise water.

Purdue engineers have developed a new spray/sewing method to transform any conventional cloth items into battery-free wearables that can be cleaned in the washing machine. "By spray-coating smart clothes with highly hydrophobic molecules, we are able to render them repellent to water, oil and mud," said Ramses Martinez, an assistant professor in Purdue's School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue's College of Engineering. "These smart clothes are almost impossible to stain and can be used underwater and washed in conventional washing machines without damaging the electronic components sewn on their surface."

The rigidity of typical waterproof garments and their reduced breathability make them feel uncomfortable after being worn for a few hours. "Thanks to their ultrathin coating, our smart clothes remain as flexible, stretchable and breathable as conventional cotton T-shirts," Martinez said.

Unlike common wearables, the Purdue smart clothes do not require batteries for powering. By simply harvesting energy from Wi-Fi or radio waves in the environment, the clothes are capable of powering the circuitry sewn on the textile.

A coating of fluorinated molecules is coated onto breathable and waterproof...
A coating of fluorinated molecules is coated onto breathable and waterproof smart clothes to repel stains and withstand cleaning in conventional washing machines.
Source: Purdue University photo/Rebecca McElhoe

One example is a battery-free glove that illuminates its fingertips every time the user is near a live cable to warn about the possibility of an electric shock. Another is a miniaturized cardiac monitoring system sewn on a washable sweatband capable of monitoring the health status of the wearer.

"Such wearable devices, powered by ubiquitous Wi-Fi signals, will make us not only think of clothing as just a garment that keeps us warm but also as wearable tools designed to help us in our daily life, monitor our health and protect us from accidents," Martinez said."I envision smart clothes will be able to transmit information about the posture and motion of the wearer to mobile apps, allowing machines to understand human intent without the need of other interfaces, expanding the way we communicate, interact with devices, and play video games."

The fingertips of a wireless voltage detection glove illuminates when the...
The fingertips of a wireless voltage detection glove illuminates when the wearer’s hand approaches a live cable.
Source: Purdue University photo/Rebecca McElhoe

This technology can be fabricated in conventional, large-scale sewing facilities, which are expected to accelerate the development and commercialization of future smart clothes.

The technology is published in Nano Energy.

Subscribe to our newsletter

Related articles

E-textiles made with new cellulose thread

E-textiles made with new cellulose thread

Researchers have developed a thread made of conductive cellulose, which offers practical possibilities for electronic textiles.

Smart fabrics with bioactive inks monitor body

Smart fabrics with bioactive inks monitor body

Researchers have developed biomaterial-based inks that respond to and quantify chemicals released from the body or in the surrounding environment by changing color.

Smart textile fibers measure wearer’s health

Smart textile fibers measure wearer’s health

Researchers have developed electronic fibers that, when embedded in textiles, can collect a wealth of information about our bodies by measuring subtle and complex fabrics deformations.

A highly elastic and ultrathin skin display

A highly elastic and ultrathin skin display

Researchers have developed a ultrathin, elastic display that fits snugly on the skin.

Snake skin inspires development of wearable sensors

Snake skin inspires development of wearable sensors

Researchers at Terasaki Institute for Biomedical Innovation have designed a wearable sensor with wide-ranging strain sensitivity.

Smart textiles: a programmable digital fiber

Smart textiles: a programmable digital fiber

In a first, the digital fiber contains memory, temperature sensors, and a trained neural network program for inferring physical activity.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

Decentralized patient monitoring: Sensors quickly detect changes in vital signs

Decentralized patient monitoring: Sensors quickly detect changes in vital signs

The Fraunhofer Institutes project M³Infekt aims to develop a multi-modal, modular and mobile system of sensors for monitoring infectious diseases.

Popular articles

Subscribe to Newsletter