Graphene sensors monitor food safety

Researchers are using high-resolution printing technology and the unique properties of graphene to make low-cost biosensors to monitor food safety and livestock health.

Photo
Researchers are using aerosol-jet-printing technology to create these graphene biosensors that can detect histamine, an allergen and indicator of spoiled fish and meat.
Source: Image courtesy of Jonathan Claussen

Researchers dipped their new, printed sensors into tuna broth and watched the readings. It turned out the sensors – printed with high-resolution aerosol jet printers on a flexible polymer film and tuned to test for histamine, an allergen and indicator of spoiled fish and meat – can detect histamine down to 3.41 parts per million. The U.S. Food and Drug Administration has set histamine guidelines of 50 parts per million in fish, making the sensors more than sensitive enough to track food freshness and safety.

Making the sensor technology possible is graphene, a supermaterial that’s a carbon honeycomb just an atom thick and known for its strength, electrical conductivity, flexibility and biocompatibility. Making graphene practical on a disposable food-safety sensor is a low-cost, aerosol-jet-printing technology that’s precise enough to create the high-resolution electrodes necessary for electrochemical sensors to detect small molecules such as histamine. “This fine resolution is important,” said Jonathan Claussen, an associate professor of mechanical engineering at Iowa State University and one of the leaders of the research project. “The closer we can print these electrode fingers, in general, the higher the sensitivity of these biosensors.”

Claussen and the other project leaders – Carmen Gomes, an associate professor of mechanical engineering at Iowa State; and Mark Hersam, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University in Evanston, Illinois – have recently reported their sensor discovery in a paper published online by the journal 2D Materials.

The paper describes how graphene electrodes were aerosol jet printed on a flexible polymer and then converted to histamine sensors by chemically binding histamine antibodies to the graphene. The antibodies specifically bind histamine molecules.

The histamine blocks electron transfer and increases electrical resistance, Gomes said. That change in resistance can be measured and recorded by the sensor. "This histamine sensor is not only for fish,” Gomes said. “Bacteria in food produce histamine. So it can be a good indicator of the shelf life of food.”

The researchers believe the concept will work to detect other kinds of molecules, too. “Beyond the histamine case study presented here, the (aerosol jet printing) and functionalization process can likely be generalized to a diverse range of sensing applications including environmental toxin detection, foodborne pathogen detection, wearable health monitoring, and health diagnostics,” they wrote in their research paper.

For example, by switching the antibodies bonded to the printed sensors, they could detect salmonella bacteria, or cancers or animal diseases such as avian influenza, the researchers wrote.

Claussen, Hersam and other collaborators have demonstrated broader application of the technology by modifying the aerosol-jet-printed sensors to detect cytokines, or markers of inflammation. The sensors can monitor immune system function in cattle and detect deadly and contagious paratuberculosis at early stages.

Claussen, who has been working with printed graphene for years, said the sensors have another characteristic that makes them very useful: They don’t cost a lot of money and can be scaled up for mass production. “Any food sensor has to be really cheap,” Gomes said. “You have to test a lot of food samples and you can’t add a lot of cost.”

Claussen and Gomes know something about the food industry and how it tests for food safety. Claussen is chief scientific officer and Gomes is chief research officer for NanoSpy Inc., a startup company based in the Iowa State University Research Park that sells biosensors to food processing companies. They said the company is in the process of licensing this new histamine and cytokine sensor technology. It, after all, is what they’re looking for in a commercial sensor. “This,” Claussen said, “is a cheap, scalable, biosensor platform.”

Subscribe to our newsletter

Related articles

Self-aware materials for living structures

Self-aware materials for living structures

Researchers at University of Pittsburgh have developed a revolutionary scalable material that senses and powers itself.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

A conductive hydrogel for medical applications

A conductive hydrogel for medical applications

Researchers have developed a method to produce graphene-enhanced hydrogels with an excellent level of electrical conductivity.

Sensor detects signs of burnout in sweat

Sensor detects signs of burnout in sweat

Engineers have developed a wearable sensing chip that can measure the concentration of cortisol – the stress hormone – in human sweat.

Sensor rapidly detects multiple sepsis biomarkers

Sensor rapidly detects multiple sepsis biomarkers

The Wyss Institute's eRapid electrochemical sensor technology now enables specific and multiplexed detection of blood biomarkers at low cost.

An all-in-one health monitor

An all-in-one health monitor

Engineers have developed a skin patch that can continuously track blood pressure and heart rate while measuring the wearer’s levels of glucose as well as lactate.

Microneedles: Nano-sized, huge impact

Microneedles: Nano-sized, huge impact

By downscaling needles tool to micrometer-size, researchers open even more areas of application for them, while bypassing some of the most important issues.

Implantable sensor could safely biodegrade

Implantable sensor could safely biodegrade

Researchers reported they designed a flexible and implantable sensor that can monitor various forms of nitric oxide (NO) and nitrogen dioxide (NO2) gas in the body.

Graphene – the versatile wonder material

Graphene – the versatile wonder material

Graphene has a vast variety of practical applications in the creation of new materials. But what exactly is graphene and what makes it so special?

Popular articles

Subscribe to Newsletter