Graphene used to built ultrasensitive biosensors

Researchers in the University of Minnesota College of Science and Engineering have developed a unique new device using graphene that provides the first step toward ultrasensitive biosensors to detect diseases at the molecular level with near perfect efficiency.

Photo
Researchers combined graphene with nano-sized metal ribbons of gold to create an ultrasensitive biosensor that could help detect a variety of diseases in humans and animals.
Source: Oh Group, University of Minnesota

Ultrasensitive biosensors for probing protein structures could greatly improve the depth of diagnosis for a wide variety of diseases extending to both humans and animals. These include Alzheimer’s disease, Chronic Wasting Disease, and mad cow disease—disorders related to protein misfolding. Such biosensors could also lead to improved technologies for developing new pharmaceutical compounds. “In order to detect and treat many diseases we need to detect protein molecules at very small amounts and understand their structure,” said Sang-Hyun Oh, University of Minnesota electrical and computer engineering professor and lead researcher on the study. “Currently, there are many technical challenges with that process. We hope that our device using graphene and a unique manufacturing process will provide the fundamental research that can help overcome those challenges.”

Graphene, a material made of a single layer of carbon atoms, was discovered more than a decade ago. It has enthralled researchers with its range of amazing properties that have found uses in many new applications, including creating better sensors for detecting diseases.

Significant attempts have been made to improve biosensors using graphene, but the challenge exists with its remarkable single atom thickness. This means it does not interact efficiently with light when shined through it. Light absorption and conversion to local electric fields is essential for detecting small amounts of molecules when diagnosing diseases. Previous research utilizing similar graphene nanostructures has only demonstrated a light absorption rate of less than 10 percent.

Photo

In this new study, University of Minnesota researchers combined graphene with nano-sized metal ribbons of gold. Using sticky tape and a high-tech nanofabrication technique developed at the University of Minnesota, called “template stripping,” researchers were able to create an ultra-flat base layer surface for the graphene.

They then used the energy of light to generate a sloshing motion of electrons in the graphene, called plasmons, which can be thought to be like ripples or waves spreading through a “sea” of electrons. Similarly, these waves can build in intensity to giant “tidal waves” of local electric fields based on the researchers’ clever design.

By shining light on the single-atom-thick graphene layer device, they were able to create a plasmon wave with unprecedented efficiency at a near-perfect 94 percent light absorption into “tidal waves” of electric field. When they inserted protein molecules between the graphene and metal ribbons, they were able to harness enough energy to view single layers of protein molecules.

“Our computer simulations showed that this novel approach would work, but we were still a little surprised when we achieved the 94 percent light absorption in real devices,” said Oh, who holds the Sanford P. Bordeau Chair in Electrical Engineering at the University of Minnesota. “Realizing an ideal from a computer simulation has so many challenges. Everything has to be so high quality and atomically flat. The fact that we could obtain such good agreement between theory and experiment was quite surprising and exciting.”

Subscribe to our newsletter

Related articles

Smart biosensor to explore the biomolecular world

Smart biosensor to explore the biomolecular world

Scientists have developed AI-powered nanosensors that let researchers track various kinds of biological molecules without disturbing them.

Sensor rapidly detects multiple sepsis biomarkers

Sensor rapidly detects multiple sepsis biomarkers

The Wyss Institute's eRapid electrochemical sensor technology now enables specific and multiplexed detection of blood biomarkers at low cost.

Nanotechnology provides rapid visual detection of COVID-19

Nanotechnology provides rapid visual detection of COVID-19

Scientists have developed an experimental diagnostic test for COVID-19 that can visually detect the presence of the virus in 10 minutes.

Graphene used to detect COVID-19 quickly

Graphene used to detect COVID-19 quickly

Researchers have used graphene to detect the SARS-CoV-2 virus in laboratory experiments. It could be a breakthrough in coronavirus detection, with potential applications in the fight against COVID-19 and its variants.

A fully recyclable printed electronics

A fully recyclable printed electronics

Engineers at Duke University have developed the world's first fully recyclable printed electronics.

An on-chip printed 'electronic nose'

An on-chip printed 'electronic nose'

Researchers have designed an on-chip printed 'electronic nose' that serves as a proof of concept for low-cost and sensitive devices to be used in healthcare.

Biosensors quickly spot coronavirus proteins, antibodies

Biosensors quickly spot coronavirus proteins, antibodies

Scientists have created a new way to detect the proteins that make up the pandemic coronavirus, as well as antibodies against it.

A bifunctional biosensor detects COVID-19

A bifunctional biosensor detects COVID-19

How fast could SARS-CoV-2 be detected? Researchers have developed an accurate, high-speed, and portable detector for COVID-19.

How to make the invisible visible

How to make the invisible visible

Scientists have discovered a new way to analyse microscopic cells, tissues and other transparent specimens, through the improvement of an almost 100-year-old imaging technique.

Popular articles

Subscribe to Newsletter