An illustration of the graphene-based COVID-19 spike protein detection process...
An illustration of the graphene-based COVID-19 spike protein detection process developed at UIC. The white rectangle represents the substrate with graphene functionalized with SARS-CoV-2 antibody (shown in yellow). When this graphene detector interacts with the virus’ spike protein in a COVID-positive sample, its atomic vibration frequency changes.
Source: Illustration: Vikas Berry

Graphene used to detect COVID-19 quickly

Researchers at the University of Illinois Chicago have used graphene—one of the strongest, thinnest known materials—to detect the SARS-CoV-2 virus in laboratory experiments. The researchers say the discovery could be a breakthrough in coronavirus detection, with potential applications in the fight against COVID-19 and its variants.

In experiments, researchers combined sheets of graphene, which are more than 1,000 times thinner than a postage stamp, with an antibody designed to target the infamous spike protein on the coronavirus. They then measured the atomic-level vibrations of these graphene sheets when exposed to COVID-positive and COVID-negative samples in artificial saliva. These sheets were also tested in the presence of other coronaviruses, like Middle East respiratory syndrome, or MERS-CoV.

The UIC researchers found that the vibrations of the antibody-coupled graphene sheet changed when treated with a COVID-positive sample, but not when treated with a COVID-negative sample or with other coronaviruses. Vibrational changes, measured with a device called a Raman spectrometer, were evident in under five minutes.

"We have been developing graphene sensors for many years. In the past, we have built detectors for cancer cells and ALS. It is hard to imagine a more pressing application than to help stem the spread of the current pandemic," said Vikas Berry, professor and head of chemical engineering at the UIC College of Engineering and senior author of the paper. "There is a clear need in society for better ways to quickly and accurately detect COVID and its variants, and this research has the potential to make a real difference. The modified sensor is highly sensitive and selective for COVID, and it is fast and inexpensive."

"This project has been an amazingly novel response to the need and demand for detection of viruses, quickly and accurately," said study co-author Garrett Lindemann, a researcher with Carbon Advanced Materials and Products, or CAMP. "The development of this technology as a clinical testing device has many advantages over the currently deployed and used tests."

Berry says that graphene has unique properties that make it highly versatile, making this type of sensor possible. 

Graphene is a single-atom-thick material made up of carbon. Carbon atoms are bound by chemical bonds whose elasticity and movement can produce resonant vibrations, also known as phonons, which can be very accurately measured. When a molecule like a SARS-CoV-2 molecule interacts with graphene, it changes these resonant vibrations in a very specific and quantifiable way.

"Graphene is just one atom thick, so a molecule on its surface is relatively enormous and can produce a specific change in its electronic energy," Berry said. "In this experiment, we modified graphene with an antibody and, in essence, calibrated it to react only with the SARS-CoV-2 spike protein. Using this method, graphene could similarly be used to detect COVID-19 variants."

The researchers say the potential applications for a graphene atomic-level sensor—from detecting COVID to ALS to cancer—continue to expand.

The findings are published in ACS Nano.

Subscribe to our newsletter

Related articles

Material protects against biological and chemical threats

Material protects against biological and chemical threats

A versatile composite fabric can deactivate both biological threats and chemical threats.

Device diagnoses Covid-19 from saliva samples

Device diagnoses Covid-19 from saliva samples

Engineers have designed a device that can detect SARS-CoV-2 from a saliva sample in about an hour. They showed that the diagnostic is just as accurate as the PCR tests now used.

Face mask detects Covid-19 infection

Face mask detects Covid-19 infection

Engineers have designed a novel face mask that can diagnose the wearer with Covid-19 within about 90 minutes.

AI predicts how patients with viral infections will fare

AI predicts how patients with viral infections will fare

Researchers used an artificial intelligence (AI) algorithm to sift through terabytes of gene expression data to look for shared patterns in patients with past pandemic viral infections, including SARS, MERS and swine flu.

A Covid-19 resistant material for 3D printing

A Covid-19 resistant material for 3D printing

Researchers have developed an antiviral material made from copper, silver and tungsten which can be 3D printed and kills the Covid-19 virus.

Biomaterials for virus-fighting surfaces

Biomaterials for virus-fighting surfaces

Scientists are working toward advances that, using nanotechnology, could lead to a hospital bed or doorknob that naturally destroys viruses.

Biosensors quickly spot coronavirus proteins, antibodies

Biosensors quickly spot coronavirus proteins, antibodies

Scientists have created a new way to detect the proteins that make up the pandemic coronavirus, as well as antibodies against it.

A bifunctional biosensor detects COVID-19

A bifunctional biosensor detects COVID-19

How fast could SARS-CoV-2 be detected? Researchers have developed an accurate, high-speed, and portable detector for COVID-19.

Quantum nanodiamonds help detect disease earlier

Quantum nanodiamonds help detect disease earlier

The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV.

Popular articles

Subscribe to Newsletter