“Dumb” headphones can be plugged into a HeadFi device that connects to a...
“Dumb” headphones can be plugged into a HeadFi device that connects to a cellphone, turning them into intelligent headphones. Engineers are working on a smaller version of the device.
Source: Siddharth Rupavatharam

Hearables: How to make headphones intelligent

How do you turn “dumb” headphones into smart ones? Rutgers engineers have invented a cheap and easy way by transforming headphones into sensors that can be plugged into smartphones, identify their users, monitor their heart rates and perform other services.

Their invention, called HeadFi, is based on a small plug-in headphone adapter that turns a regular headphone into a sensing device. Unlike smart headphones, regular headphones lack sensors. HeadFi would allow users to avoid having to buy a new pair of smart headphones with embedded sensors to enjoy sensing features.

“HeadFi could turn hundreds of millions of existing, regular headphones worldwide into intelligent ones with a simple upgrade,” said Xiaoran Fan, a HeadFi primary inventor. He is a recent Rutgers doctoral graduate who completed the research during his final year at the university and now works at Samsung Artificial Intelligence Center.

The HeadFi prototype.
The HeadFi prototype.
Source: Siddharth Rupavatharam

A peer-reviewed Rutgers-led paper on the invention, which results in “earable intelligence,” will be formally published in October at MobiCom 2021, the top international conference on mobile computing and mobile and wireless networking.

Headphones are among the most popular wearable devices worldwide and they continue to become more intelligent as new functions appear, such as touch-based gesture control, the paper notes. Such functions usually rely on auxiliary sensors, such as accelerometers, gyroscopes and microphones that are available on many smart headphones.

Recommended article

HeadFi turns the two drivers already inside all headphones into a versatile sensor, and it works by connecting headphones to a pairing device, such as a smartphone. It does not require adding auxiliary sensors and avoids changes to headphone hardware or the need to customize headphones, both of which may increase their weight and bulk. By plugging into HeadFi, a converted headphone can perform sensing tasks and play music at the same time.

The engineers conducted experiments with 53 volunteers using 54 pairs of headphones with estimated prices ranging from $2.99 to $15,000. HeadFi can achieve 97.2 percent to 99.5 percent accuracy on user identification, 96.8 percent to 99.2 percent on heart rate monitoring and 97.7 percent to 99.3 percent on gesture recognition.

Subscribe to our newsletter

Related articles

Sensor warns of impending COVID-19 cytokine storm

Sensor warns of impending COVID-19 cytokine storm

Scientists report preliminary results on a sweat sensor that acts as an early warning system for an impending cytokine storm, which could help doctors more effectively treat patients.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

From the wrist into the ear – the potential of hearables

From the wrist into the ear – the potential of hearables

A subset of wearables are the so-called hearables – in-ear devices that are well suited for long-term monitoring as they are non-invasive, inconspicuous and easy to fasten.

Monitoring your ZZZs - how sleep trackers perform

Monitoring your ZZZs - how sleep trackers perform

Researchers tested the efficacy of eight commercial sleep trackers. The result: you snooze, you lose – at least with with some of them.

Using wearables to keep babies healthy

Using wearables to keep babies healthy

Researchers at the WVU School of Medicine explored how a wearable device called WHOOP could be used to monitor pregnant women’s resting heart rate and heart rate variability.

Sense Glucose Earring for managing diabetes

Sense Glucose Earring for managing diabetes

A product design graduate has developed a discreet item of wearable technology that monitors blood sugar levels and delivers feedback in real-time.

The role of mhealth in monitoring Covid-19 patients

The role of mhealth in monitoring Covid-19 patients

Researchers have examined how mobile technologies have been used in monitoring and mitigating the effects of the Covid-19 pandemic.

3D printed transparent fibers can sense breath

3D printed transparent fibers can sense breath

Researchers used 3D printing techniques to make electronic fibres, each 100 times thinner than a human hair, creating sensors beyond the capabilities of conventional film-based devices.

Popular articles

Subscribe to Newsletter