Comb-like molecules within the meshes of the hydrogel prevent small molecules,...
Comb-like molecules within the meshes of the hydrogel prevent small molecules, like glucose-sensing assays, from leaking out.
Source: Dr. Melissa Grunlan/Texas A&M University College of Engineering

Hydrogels may make enduring glucose-monitoring implants

Scientists at Texas A&M University have designed a hydrogel membrane that may be used to house optical glucose sensing materials toward building a biosensor for monitoring sugar levels in diabetics.

By incorporating dangling, comb-like molecular chains within a type of hydrogel called poly(N-isopropylacrylamide), or poly NIPAAm for short, they showed that the membrane could prevent leakage of small-sized molecules, like the ones for glucose-sensing, while still allowing glucose to freely diffuse in and out.

When ready for clinical use, the researchers said these membranes could be used to form biosensors that could be easily implanted under the skin of the wrist to offer a more comfortable alternative to transdermal implants, which sit partially outside the skin. Moreover, unlike transdermal implants that need to be changed every few weeks, this type of subcutaneous implant may only need to be replaced every few months.

“We’ve done a lot of work on hydrogel materials looking at mechanical properties and foreign body reactions, but our grand goal has always been to use poly NIPAAm membranes to build a subcutaneous glucose biosensor,” said Melissa Grunlan, professor and holder of the Charles H. and Bettye Barclay Professorship in the Department of Biomedical Engineering. “In this study, we have been able to fine-tune the diffusion properties of these hydrogels that we have previously identified as a promising candidate for building long-term functioning glucose biosensors.”

Poly NIPAAms are a class of organic hydrogels that have a soft texture, like contact lenses. One of their attractive properties is that they can undergo cyclical swelling and deswelling with small temperature fluctuations in the body. Since their surface is dynamically changing with temperature, they deter the attachment of cells and biomolecules. This active, self-cleaning mechanism makes poly NIPAAm hydrogels appealing for implants since they minimize the attack from the immune system.

To use the poly NIPAAm membrane for monitoring blood sugar, it must house enough glucose-sensing molecules or assays. Furthermore, the longevity of the hydrogel also depends on the membrane’s ability to retain these assay molecules without their leaking out.

“Think about the NIPAAm hydrogel like a knitted sweater where the spaces between the meshes are formed by the crossing stitches. Right now, these spaces or windows in the hydrogels are too big, letting the assay molecules go right through,” Grunlan said. “If the assays keep leaching out this way, we’re not going to have a long functioning sensor.”

Grunlan and her team focused their efforts in fine-tuning the properties of poly NIPAAms to limit the leaking of glucose-sensing molecules while still allowing the glucose to freely diffuse through the hydrogel.

To decrease the size of gaps, the researchers inserted dangling molecules of different charges, lengths and concentrations to the poly NIPAAm hydrogel. When incorporated into the hydrogel, these molecules create comb-shaped barriers, whose teeth are designed to block diffusion of small assay-sized molecules. To test if this comb-like architecture can limit diffusion of glucose sensors, they also put within the hydrogel, fluorescently tagged molecules called dextrans, which served as proxies for glucose-sensing molecules. Next, they placed the hydrogel into water and measured the amount of fluorescence in the water due to the leaking of dextrans from the hydrogel.

The researchers found that when they used a negatively charged molecule called poly(2-acrylamido-2-methyl-1-propanesulfonic acid) or PAMP, the combs prevented the diffusion of dextrans. They also observed that glucose molecules were unhindered in their flow in and out of the hydrogel.

Grunlan noted that now that they have proof-of-concept that their hydrogels can curb leaking of small dextrans, the next step in their research would be to build a biosensor with glucose-sensing molecules contained within the membrane.

“Even though our present study did not involve actual sensing molecules, it very conclusively and precisely shows you what comb architectures can do for hydrogels to limit diffusion,” Grunlan said. “This was a systematic study to show the effectiveness of our approach and the possibility of extending our findings to other areas of research other than glucose sensing for which hydrogels with limited diffusion need to be designed.”

The research was published in the online journal American Chemical Society (ACS) Applied Polymer Materials.

Subscribe to our newsletter

Related articles

Microneedles: Nano-sized, huge impact

Microneedles: Nano-sized, huge impact

By downscaling needles tool to micrometer-size, researchers open even more areas of application for them, while bypassing some of the most important issues.

Hydrogel contact lenses for therapeutic use

Hydrogel contact lenses for therapeutic use

Researchers at the Terasaki Institute have developed prototypes of contact lenses that can assist with tear sampling for diagnostic purposes.

Implantable sensor could safely biodegrade

Implantable sensor could safely biodegrade

Researchers reported they designed a flexible and implantable sensor that can monitor various forms of nitric oxide (NO) and nitrogen dioxide (NO2) gas in the body.

Biosensors open up paths to treatments

Biosensors open up paths to treatments

Self-powered biosensors that could one day lead to wearable devices that do not need to be recharged, or even sensors that are powered by the very bodily process they are designed to monitor.

Smart contact lenses diagnose and treat diabetes

Smart contact lenses diagnose and treat diabetes

Researchers developed wirelessly driven ‘smart contact lens’ technology that can detect diabetes and further treat diabetic retinopathy just by wearing them.

Sensor monitors blood sugar through a breath

Sensor monitors blood sugar through a breath

A flexible sensor could hold the key to people with diabetes one day monitoring their blood sugar with a simple puff into a handheld device

3D printed glucose biosensors

3D printed glucose biosensors

Using 3D printing, researchers developed a glucose monitor with much better stability and sensitivity than those manufactured through traditional methods.

Eye implant could help prevent blindness

Eye implant could help prevent blindness

Electrical and medical engineering researchers create device that makes it easier to measure pressure inside the eyes of people at risk for glaucoma.

Snake skin inspires development of wearable sensors

Snake skin inspires development of wearable sensors

Researchers at Terasaki Institute for Biomedical Innovation have designed a wearable sensor with wide-ranging strain sensitivity.

Popular articles

Subscribe to Newsletter