Using kirigami to cut and fold graphene allows wearable sensors to better...
Using kirigami to cut and fold graphene allows wearable sensors to better conform with the natural movement of the body.
Source: University of Illinois at Urbana-Champaign

Kirigami inspires new method for wearable sensors

As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body’s natural movement becomes ever more crucial. To that end, researchers at the University of Illinois at Urbana-Champaign have developed a method of adopting kirigami architectures to help materials become more strain tolerant and more adaptable to movement.

As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body’s natural movement becomes ever more crucial. To that end, researchers at the University of Illinois at Urbana-Champaign have developed a method of adopting kirigami architectures to help materials become more strain tolerant and more adaptable to movement.

Similar to origami, the more well-known art of paper-folding, kirigami involves cutting in addition to folding. The team led by SungWoo Nam, associate professor of Mechanical Science and Engineering, and Keong Yong successfully applied kirigami architectures to graphene, an ultra-thin material, to create sensors suitable for wearable devices. “To achieve the best sensing results, you don’t want your movement to generate additional signal outputs,” Nam noted. “We use kirigami cuts to provide stretchability beyond a material’s normal deformability. This particular design is very effective at decoupling the motion artifacts from the desired signals.”

To achieve those results, the research team was able to perform a number of simulations by collaborating with Narayana Aluru, professor of Mechanical Science and Engineering, and by developing online software on a nanomanufacturing node, the first of its kind to be developed. The online software platform permits researchers to perform simulations before creating the actual devices or platforms.

Once the team came up with a design that worked well in simulation, it was time to put it to the test. Graphene seemed promising as a material because it could withstand significant deformation and breaking when compared to metals and other conventional materials. Because graphene is an atomically thin material, the research team was able to encapsulate the graphene layer between two polyimide layers (the same material used to protect foldable smartphones). Once the “sandwich” was created, they next engineered kirigami cuts to enhance the stretchability of the material. “Because graphene is sensitive to external changes, yet also a flexible semimetal conductor, people are very interested in creating sensors from it,” Nam said. “This sensitivity is well suited for detecting what is around you, such as glucose or ion levels in sweat.”

The team found that adopting a kirigami architecture made the graphene not only stretchable, but also strain-insensitive and free from motion artifacts, meaning that even as it was deformed, there was no change in electrical state. Specifically, they found that the graphene electrodes exhibited strain-insensitivity up to 240 percent uniaxial strain, or 720 degrees of twisting. “What’s interesting about kirigami is that when you stretch it, you create an out of plane tilting,” Nam said. “That is how the structure can take such large deformations.”

In their design, the researchers put the active sensing element on an “island” between two “bridges” made from kirigami graphene. While the graphene did not lose any electrical signal despite the bending and tilting, it still took the load from the stretching and straining, enabling the active sensing element to remain connected to the surface. As such, kirigami has the unique ability to redistribute stress concentrations, thereby achieving enhanced directional mechanical attributes.

Subscribe to our newsletter

Related articles

A wearable gas sensor for health monitoring

A wearable gas sensor for health monitoring

A highly sensitive wearable gas sensor for environmental and human health monitoring may soon become commercially available.

“Band-aid” sensor patch monitors vital parameters

“Band-aid” sensor patch monitors vital parameters

Researchers have developed a patch-based health diagnosis sensor system that is easily attached to skin, like a band aid.

Skin-like sensors bring a human touch to wearable tech

Skin-like sensors bring a human touch to wearable tech

Researchers have developed a super-stretchy, transparent and self-powering sensor that records the complex sensations of human skin.

Wearable AC monitors vital data

Wearable AC monitors vital data

Smart shirt includes health care applications such as the ability to monitor blood pressure, electrical activity of the heart and the level of skin hydration.

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Wearable sensor to help treat swallowing disorders

Wearable sensor to help treat swallowing disorders

A wearable monitoring device to make treatments easier and more affordable for the millions of people with swallowing disorders is about to be released into the market.

Nexkin: multiparametric monitoring shirt launched

Nexkin: multiparametric monitoring shirt launched

Chronolife announced the launch of Nexkin, a washable smart T-shirt that monitors six key physiological parameters to enable prevention, risk reduction, and remote monitoring.

Wearable sweat sensor detects Gout-causing compounds

Wearable sweat sensor detects Gout-causing compounds

Researchers describe a mass-producible wearable sensor that can monitor levels of metabolites and nutrients in a person's blood by analyzing their sweat.

Nano-based wearable electronics for mental disorder diagnosis

Nano-based wearable electronics for mental disorder diagnosis

NanoEDGE research project aims at converging production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization.

Popular articles