Next-generation cast inspired by animal scales
Source: Imperial College London

Next-generation cast inspired by animal scales

An Imperial graduate has designed wearable technology inspired by protective structures found in the animal world to protect athletes from injury.

SCALED is a nature-inspired flexible wearable that could prevent injuries, improve rehabilitation and enhance sports performance. 

Research shows that joint injuries are often recurrent and require lengthy and cost-intensive rehabilitation until motion, strength and function are restored, and may even result in long-term immobility. Current protective and supportive wearables (such as a cast or brace) constantly limit and support joints, which may lead to reduced muscle strength and stiffness in the affected area.

Inspired by nature

Imperial College London graduate Natalie Kerres was inspired by animals that are physically protected from threats by skin, shells or scales, designing a product that mimics natural protection and healing, while still allowing flexibility.

Bespoke interlocking protective scales provide precise motion limitation to protect the wearer. A parametric algorithm precisely controls its 3D form, for a custom scale structure to fit the user's body shape and requirements. The scales prevent injuries from happening in the first place, without limiting motion and could be used for improving rehabilitation and enhancing sports performance.

Next-generation cast inspired by animal scales
Source: Imperial College London
Subscribe to our newsletter

Related articles

Glove and gaming make rehabilitation fun

Glove and gaming make rehabilitation fun

A new sensor material suitable for developing a rehabilitation glove.

Walk and run more easily with an exosuit

Walk and run more easily with an exosuit

A versatile, portable exosuit that assists both walking and running highlights the potential for lightweight and non-restrictive wearable robots outside the lab.

Smart textiles: breathable fabric to power small electronics

Smart textiles: breathable fabric to power small electronics

Scientists have created a new triboelectric fabric that generates electricity from the movement of the body while remaining flexible and breathable.

Electronic skin – the next generation of wearables

Electronic skin – the next generation of wearables

Electronic skins will play a significant role in monitoring, personalized medicine, prosthetics, and robotics.

Wash-and-wear biosensors

Wash-and-wear biosensors

A process turns clothing fabric into biosensors which measure a muscle’s electrical activity as it is worn.

Graphene – the versatile wonder material

Graphene – the versatile wonder material

Graphene has a vast variety of practical applications in the creation of new materials. But what exactly is graphene and what makes it so special?

Self-powered wearable devices

Self-powered wearable devices

Scientists have created a 3D printing method that integrates functional and structural materials to print wearable.

Smart bandage shows promise for wound management

Smart bandage shows promise for wound management

Wearable sensor detects multiple chronic wound biomarkers to facilitate timely and personalised wound care.

How 5 upper body exoskeletons support natural movements

How 5 upper body exoskeletons support natural movements

We present five upper body exoskeletons that might help restore natural hand or limb movements.

Popular articles

Subscribe to Newsletter