A graphene-based adhesive biosensor inspired by octopus “suckers” is...
A graphene-based adhesive biosensor inspired by octopus “suckers” is flexible and holds up in wet and dry environments.
Source: Adapted from ACS Appl. Mater. Interfaces 2019, 11, 16951−16957

Octopus-inspired wearable sensor

Water-resistant and skin-adhesive wearable electronics are using graphene fabric sensor with octopus-inspired microsuckers.

Wearable electronics that adhere to skin are an emerging trend in health sensor technology for their ability to monitor a variety of human activities, from heart rate to step count. But finding the best way to stick a device to the body has been a challenge. Now, a team of researchers reports the development of a graphene-based adhesive biosensor inspired by octopus “suckers.”

For a wearable sensor to be truly effective, it must be flexible and adhere fully to both wet and dry skin but still remain comfortable for the user. Thus, the choice of substrate, the material that the sensing compounds rest upon, is crucial. Woven yarn is a popular substrate, but it sometimes doesn’t fully contact the skin, especially if that skin is hairy. Typical yarns and threads are also vulnerable to wet environments. Adhesives can lose their grip underwater, and in dry environments they can be so sticky that they can be painful when peeled off. To overcome these challenges, Changhyun Pang, Changsoon Choi and colleagues worked to develop a low-cost, graphene-based sensor with a yarn-like substrate that uses octopus-like suckers to adhere to skin.

The researchers coated an elastic polyurethane and polyester fabric with graphene oxide and soaked in L-ascorbic acid to aid in conductivity while still retaining its strength and stretch. From there, they added a coating of a graphene and poly(dimethylsiloxane) (PDMS) film to form a conductive path from the fabric to the skin. Finally, they etched tiny, octopus-like patterns on the film. The sensor could detect a wide range of pressures and motions in both wet and dry environments. The device also could monitor an array of human activities, including electrocardiogram signals, pulse and speech patterns, demonstrating its potential use in medical applications, the researchers say.

Subscribe to our newsletter

Related articles

Wearable sensor tracks biochemical data

Wearable sensor tracks biochemical data

Scientist are developing a patch that monitors the sweat of high performance athletes for medical information.

Wearable offers new option for monitoring heart health

Wearable offers new option for monitoring heart health

An invention may turn one of the most widely used materials for biomedical applications into wearable devices to help monitor heart health.

Smart textile fibers measure wearer’s health

Smart textile fibers measure wearer’s health

Researchers have developed electronic fibers that, when embedded in textiles, can collect a wealth of information about our bodies by measuring subtle and complex fabrics deformations.

Necklace detects abnormal heart rhythm

Necklace detects abnormal heart rhythm

A necklace which detects abnormal heart rhythm will be showcased for the first time on EHRA Essentials 4 You, a scientific platform of the European Society of Cardiology (ESC).

Sensors woven into a shirt can monitor vital signs

Sensors woven into a shirt can monitor vital signs

Researchers have developed a way to incorporate electronic sensors into stretchy fabrics, allowing them to create shirts or other garments that could be used to monitor vital signs such as temperature, respiration, and heart rate.

3D printed sensor invented for wearables

3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

Sensor predicts worsening heart failure before hospitalization

Sensor predicts worsening heart failure before hospitalization

A wearable sensor could help doctors remotely detect critical changes in heart failure patients days before a health crisis occurs and could prevent hospitalization.

Activity trackers help manage diabetes

Activity trackers help manage diabetes

Patients with diabetes and cardiovascular disease who used wearable step-counting devices have shown small-to-medium improvements in physical activity.

New transparent and graphene enabled wearables

New transparent and graphene enabled wearables

Researchers have found a way to use graphene to make flexible photodetectors to measure heart rate, blood oxygen concentration, and breathing rate.

Popular articles