3D-printed sensors allow for simultaneous recording and imaging of tissues and...
3D-printed sensors allow for simultaneous recording and imaging of tissues and organs during surgical procedures.
Source: Bongjoong Kim

Printable biosensors could make surgery safer

Researchers at Purdue University and Los Alamos National Laboratory have developed fully printable biosensor made of soft bio-inks interfaces with a pig heart.

Surgeons may soon be able to localize critical regions in tissues and organs during a surgical operation thanks to a new, patent-pending Purdue University biosensor that can be printed in 3D using an automated printing system.

Chi Hwan Lee, Assistant Professor of Biomedical Engineering in the Weldon School of Biomedical Engineering at Purdue University, created the biosensor, which allows for simultaneous recording and imaging of tissues and organs during a surgical operation. "Simultaneous recording and imaging could be useful during heart surgery in localizing critical regions and guiding surgical interventions such as a procedure for restoring normal heart rhythms," Lee said.

Traditional methods to simultaneously record and image tissues and organs have proven difficult because other sensors used for recording typically interrupt the imaging process. "To this end, we have developed an ultra-soft, thin and stretchable biosensor that is capable of seamlessly interfacing with the curvilinear surface of organs; for example the heart, even under large mechanical deformations, for example cardiac cycles," Lee said. "This unique feature enables the simultaneous recording and imaging, which allows us to accurately indicate the origin of disease conditions: in this example, real-time observations on the propagation of myocardial infarction in 3D."

By using soft bio-inks during the rapid prototyping of a custom-fit design, biosensors fit a variety of sizes and shapes of an organ. The bio-inks are softer than tissue, stretch without experiencing sensor degradation and have reliable natural adhesion to the wet surface of organs without needing additional adhesives. Kwan-Soo Lee's research group in Los Alamos National Laboratory is responsible for the formulation and synthesis of the bio-inks.

A number of prototype biosensors using different shapes, sizes and configurations have been produced. Craig Goergen, the Leslie A. Geddes Associate Professor of Biomedical Engineering in Purdue's Weldon School of Biomedical Engineering, and his laboratory group have tested the prototypes in mice and pigs in vivo.

"Professor Goergen and his team were successfully able to identify the exact location of myocardial infarctions over time using the prototype biosensors," Lee said. "In addition to these tests, they also evaluated the biocompatibility and anti-biofouling properties of the biosensors, as well as the effects of the biosensors on cardiac function. They have shown no significant adverse effects."

Subscribe to our newsletter

Related articles

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Tool with smart sensors advances cardiac surgery

Tool with smart sensors advances cardiac surgery

A new class of medical instruments equipped with an advanced soft electronics system could improve the diagnoses and treatments of a number of cardiac diseases and conditions.

3D printed lifelike heart valve models

3D printed lifelike heart valve models

Researchers have developed a groundbreaking process for multi-material 3D printing of lifelike models of the heart's aortic valve and the surrounding structures.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Researchers successfully bioprint healthy new tissue

Researchers successfully bioprint healthy new tissue

New muscle has successfully been created in mice using a minimally invasive technique dubbed ‘intravital 3D bioprinting’.

A swifter way towards 3D printed organs

A swifter way towards 3D printed organs

A new technique called SWIFT (sacrificial writing into functional tissue) allows 3D printing of large, vascularized human organ building blocks.

3D printing enables tissue with customized shape

3D printing enables tissue with customized shape

3D-printed chambers with personalized shapes will be used to grow transplantable tissue that can take the shape of a wound to be closed.

Cyber-physical organ twins to train surgeons

Cyber-physical organ twins to train surgeons

Researchers have developed a range of artificial organ phantoms to serve as training platforms for surgeons.

Popular articles

Subscribe to Newsletter