Second Chance uses sonar to monitor someones breathing rate and sense when an...
Second Chance uses sonar to monitor someone's breathing rate and sense when an opioid overdose has occurred.
Source: Mark Stone/University of Washington

‘Second Chance’ app detects opioid overdose and its precursors

Researchers have developed an app that uses sonar to monitor someone's breathing rate and sense when an opioid overdose has occurred.

At least 115 people die every day in the U.S. after overdosing on opioids, according to the National Institute on Drug Abuse. And in 2016, illegal injectable opioids became the most common drug involved in overdose-related deaths. This spike has led to a national public health crisis and epidemic. During an overdose, a person breathes slower or stops breathing altogether. These symptoms are reversible with the drug naloxone if caught in time. But people who use opioids by themselves have no way of asking for help in the event of an overdose.

Researchers at the University of Washington have developed a cellphone app, called Second Chance, that uses sonar to monitor someone’s breathing rate and sense when an opioid overdose has occurred. The app accurately detects overdose-related symptoms about 90 percent of the time and can track someone’s breathing from up to 3 feet away. “The idea is that people can use the app during opioid use so that if they overdose, the phone can potentially connect them to a friend or emergency services to provide naloxone,” said co-corresponding author Shyam Gollakota, an associate professor in the UW’s Paul G. Allen School of Computer Science & Engineering. “Here we show that we have created an algorithm for a smartphone that is capable of detecting overdoses by monitoring how someone’s breathing changes before and after opioid use.”

Detecting precursors

The Second Chance app sends inaudible sound waves from the phone to people’s chests and then monitors the way the sound waves return to the phone to look for specific breathing patterns. “We’re looking for two main precursors to opioid overdose: when a person stops breathing, or when a person’s breathing rate is seven breaths per minute or lower,” said co-corresponding author Dr. Jacob Sunshine, an assistant professor of anesthesiology and pain medicine at the UW School of Medicine. “Less than eight breaths per minute is a common cutoff point in a hospital that would trigger people to go to the bedside and make sure a patient is OK.”

In addition to watching breathing, Second Chance also monitors how people move. “People aren’t always perfectly still while they’re injecting drugs, so we want to still be able to track their breathing as they’re moving around,” said lead author Rajalakshmi Nandakumar, a doctoral student in the Allen School. “We can also look for characteristic motions during opioid overdose, like if someone’s head slumps or nods off.”

Photo
When the app detects decreased or absent breathing, it send an alarm asking the person to interact with it before it contacts a trusted friend or emergency services.
Source: Mark Stone/University of Washington

To be able to use real-world data to design and test the algorithm behind the app, the researchers partnered with the Insite supervised injection facility in Vancouver, Canada. Insite is the first legal supervised consumption site in North America. As part of the study, participants at Insite wore monitors on their chests that also track breathing rates. “We asked participants to prepare their drugs like they normally would, but then we monitored them for a minute pre-injection so the algorithm could get a baseline value for their breathing rate,” said Nandakumar. “After we got a baseline, we continued monitoring during the injection and then for five minutes afterward, because that’s the window when overdose symptoms occur.” 

Of the 94 participants who tested the algorithm, 47 had a breathing rate of seven breaths per minute or slower, 49 stopped breathing for a significant period, and two people experienced an overdose event that required oxygen, ventilation and/or naloxone treatment. On average, the algorithm correctly identified breathing problems that foreshadow overdose 90 percent of the time.

The researchers also wanted to make sure the algorithm could detect actual overdose events, because these occur infrequently at Insite. The researchers worked with anesthesiology teams at UW Medical Center to “simulate” overdoses in an operating room, allowing the app to monitor people and detect when they stop breathing. “When patients undergo anesthesia, they experience much of the same physiology that people experience when they’re having an overdose,” Sunshine said. “Nothing happens when people experience this event in the operating room because they’re receiving oxygen and they are under the care of an anesthesiology team. But this is a unique environment to capture difficult-to-reproduce data to help further refine the algorithms for what it looks like when someone has an acute overdose.”

Photo
If a person fails to interact with the app, it will contact someone who can administer naloxone.
Source: Mark Stone/University of Washington

For the simulation, the team recruited healthy participants undergoing previously scheduled elective surgeries. After providing informed consent, the patients then received standard anesthetic medications that led to 30 seconds of slower or absent breathing, and these events were captured by the device. The algorithm correctly predicted 19 out of the 20 simulated overdoses. For the one case it was wrong, the patient’s breathing rate was just above the algorithm’s threshold. 

Right now, Second Chance is only monitoring the people who use it. The team would eventually like the app to interact with them. “When the app detects decreased or absent breathing, we’d like it to send an alarm asking the person to interact with it,” Gollakota said. “Then if the person fails to interact with it, that’s when we say: ‘OK this is a stage where we need to alert someone,’ and the phone can contact someone with naloxone.”

The researchers are applying for FDA approval and have plans to commercialize this technology through a UW spinout called Sound Life Sciences, Inc. While this app could be used for all forms of opioid use, the team cautions that right now they have only tested it on illegal injectable opioid use because deaths from those overdoses are the most common. “We’re experiencing an unprecedented epidemic of deaths from opioid use, and it’s unfortunate because these overdoses are completely reversible phenomena if they’re detected in time,” Sunshine said. “The goal of this project is to try to connect people who are often experiencing overdoses alone to known therapies that can save their lives. We hope that by keeping people safer, they can eventually access long-term treatment.”

Subscribe to our newsletter

Related articles

mhealth: the digital placebo effect of health apps

mhealth: the digital placebo effect of health apps

Sharing information about the expected effect of a health app before its use and providing positive feedback regarding its effectiveness after its use have the potential to strengthen the placebo effect.

Can an app change your personality?

Can an app change your personality?

Research has shown that daily use of a smartphone app can lead to desired personality changes within three months.

Diabetes: Computer vision app allows easier monitoring

Diabetes: Computer vision app allows easier monitoring

A computer vision technology has been put into a free mobile phone app for regular monitoring of glucose levels in people with diabetes.

Patches detect when a viral disease is getting worse

Patches detect when a viral disease is getting worse

Xsensio has been awarded CHF 1.8 million in EU funding to adapt its Lab-on-Skin sensing patches so that they can detect when a viral illness like the flu or COVID-19 is about to get worse.

mhealth: App diagnoses sleep apnea

mhealth: App diagnoses sleep apnea

Computer science students designed an Android application, which helps to identify the signs of sleep apnea at home.

Smartwatch turns into biochemical monitoring system

Smartwatch turns into biochemical monitoring system

Engineers have designed a thin adhesive film that could upgrade a consumer smartwatch into a powerful health monitoring system.

AI algorithm to help manage diabetes

AI algorithm to help manage diabetes

Researchers, using artificial intelligence and automated monitoring, have designed a method to help people with type 1 diabetes better manage their glucose levels.

App monitors COVID-19 symptoms and mental health needs

App monitors COVID-19 symptoms and mental health needs

A new app that helps patients in self-isolation monitor for symptoms of COVID-19 and identify their mental health needs has been developed.

mhealth: blood pressure monitoring as easy as taking a selfie

mhealth: blood pressure monitoring as easy as taking a selfie

Transdermal optical imaging measures blood pressure by detecting blood flow changes in smartphone-captured facial videos.

Popular articles

Subscribe to Newsletter