Using nanotechnology, UCF researchers have developed the first rapid detector...
Using nanotechnology, UCF researchers have developed the first rapid detector for dopamine, a chemical that is believed to play a role in various diseases such as Parkinson’s, depression and some cancers.
Source: University of Central Florida

Sensor detects brain disorders in seconds

Using nanotechnology, researchers from University of Central Florida (UCF) have developed the first rapid detector for dopamine, a chemical that is believed to play a role in various diseases such as Parkinson’s, depression and some cancers.

Studies show too much dopamine could be associated with some cancers, while low dopamine could be associated with Parkinson’s disease and depression. The new technique developed at UCF requires only a few drops of blood, and results are available in minutes instead of hours because no separate lab is necessary to process the sample.

More than half a million people in the United States have Parkinson’s and major episodes of depression affect about 16 million adults a year. Current methods to detect dopamine are time consuming, require rigorous sample preparation, including blood-plasma separation, as well as specialized laboratory equipment. With this device, however, a few drops of blood on a palm-sized, rectangular chip is all that is needed. “A neurotransmitter like dopamine is an important chemical to monitor for our overall well-being so we can help screen out neural disorders like Parkinson’s disease, various brain cancers, and monitor mental health,” says Debashis Chanda, an associate professor in UCF’s NanoScience Technology Center and the study’s principle investigator. “We need to monitor dopamine so that we can adjust our medical doses to help address those problems.”

Plasma is separated from the blood within the chip. Cerium oxide nanoparticles, which coat the sensor surface, selectively capture dopamine at microscopic levels from the plasma. The capture of dopamine molecules subsequently changes how light is reflected from the sensor and creates an optical readout indicating the level of dopamine.

Sudipta Seal, an engineering professor and chair of UCF’s Department of Materials Science and Engineering, says the use of cerium oxide nanoparticles was an important part of the sensor’s success. “Getting the sensor to be sensitive to dopamine had been quite the challenge for researchers for a while, but using altered cerium oxide nanostructures on the sensing platform was key in making the sensor work,” Seal says.

Chanda co-developed the sensor with Abraham Vazquez-Guardado, a graduate of UCF’s College of Optics and Photonics and now a postdoctoral fellow at Northwestern University. Vázquez-Guardado says reduced steps and processing make the test cost effective, and it can also be performed at the patient’s side rather than in a separate lab. There is no preprocessing needed,” he says. “Our plan was to make a much quicker, enzyme-free kind of detection.”

Subscribe to our newsletter

Related articles

Graphene sensors can hear your brain whisper

Graphene sensors can hear your brain whisper

Researchers have developep a sensor that records brain activity at extremely low frequencies and could lead to new treatments for epilepsy.

Sensors open door to wearable medical diagnostic device

Sensors open door to wearable medical diagnostic device

Scientists have designed tiny optical sensors that open the door to developing a wearable device that allows doctors to medically diagnose people's health in real time.

Nanotechnology provides rapid visual detection of COVID-19

Nanotechnology provides rapid visual detection of COVID-19

Scientists have developed an experimental diagnostic test for COVID-19 that can visually detect the presence of the virus in 10 minutes.

Wearable devices set to diagnose preeclampsia or epilepsy

Wearable devices set to diagnose preeclampsia or epilepsy

Transforming how common health conditions are diagnosed using point-of-care and wearable bio diagnostic devices is the goal of a new University of South Australia project.

Printed tattoo electrodes measure brain signal

Printed tattoo electrodes measure brain signal

A researcher has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

AI accelerates blood flow MRI

AI accelerates blood flow MRI

Researchers have presented a method that could greatly accelerate dynamic magnetic resonance imaging of blood flow.

Sensors could offer early detection of lung tumors

Sensors could offer early detection of lung tumors

Researchers have developed a new approach to early diagnosis of lung cancer: a urine test that can detect the presence of proteins linked to the disease.

Diabetes: 3D printed sensors for breath tests

Diabetes: 3D printed sensors for breath tests

Researchers have developed a procedure to produce extremely sensitive and energy-efficient sensors using 3D printing.

Wearable strain sensor uses light for monitoring

Wearable strain sensor uses light for monitoring

Researchers have developed a novel wearable strain sensor based on the modulation of optical transmittance of a carbon nanotube (CNT)-embedded elastomer.

Popular articles