New wearable sensor may cut costs and improve access to biofeedback for people...
New wearable sensor may cut costs and improve access to biofeedback for people with incomplete paraplegia.
Source: Shirley Ryan AbilityLab

Sensors improve recovery for people with incomplete paraplegia

A new electromyography biofeedback device that is wearable and connects to novel smartphone games may offer people with incomplete paraplegia a more affordable, self-controllable therapy to enhance their recovery, according to a new study presented at the Association of Academic Physiatrists Annual Meeting in Puerto Rico.

Electromyography (recording electrical activity of muscles) biofeedback has been shown to enhance recovery of muscle control in people with incomplete spinal cord injury. However, existing biofeedback therapy devices are expensive and can be operated only by trained personnel in a laboratory environment. These factors prevent many people — up to 50,000 in the United States — from accessing the biofeedback therapy that could benefit their recoveries.

To help overcome these barriers, a team of researchers — led by R. James Cotton, M.D., Ph.D., at Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) and John Rogers, Ph.D., at Northwestern University — developed an affordable, wearable-sensor biofeedback platform that allows people with incomplete paraplegia to self-dose this type of therapy.

Although many research systems can record muscle activity, very few are portable and can be worn comfortably over a span of days. Critically, none of these systems provide real-time access to the data via smartphones. The innovative system provides this functionality, allowing biofeedback via games, which can be played outside of the lab.

Shirley Ryan AbilityLab and Northwestern researchers deployed recent advances in flexible, stretchable electronics to design a wearable electromyography sensor. The device allows subjects to use movement and muscle activation to control novel smartphone games — which were also developed by the researchers — making biofeedback easily and constantly available. Data from the new platform, including muscle activity and game performance, is transparently synchronized to a secure cloud database, allowing monitoring by clinicians and researchers.

The device is adhered to the skin with conductive tape and uses integrated electrodes to record muscle activity. The low-profile sensor has wireless charging, Bluetooth connectivity and a nine-axis inertial measurement unit. The battery runs for several days and may be charged wirelessly using inexpensive commercial units.

Data the research team has collected from intact subjects has shown stable measurements over time. Pilot data from subjects with spinal cord injuries demonstrate that the device has sufficient sensitivity to detect muscle activation and to control the biofeedback games.

The developers believe that their new system for electromyography biofeedback overcomes many of the barriers to wider use of this therapeutic modality. Study of the device is ongoing to determine if self-dosed biofeedback can enhance recovery of electromyography activity and other functional outcome measures. At present, the device does not have FDA approval.

Subscribe to our newsletter

Related articles

Glove and gaming make rehabilitation fun

Glove and gaming make rehabilitation fun

A new sensor material suitable for developing a rehabilitation glove.

Nexkin: multiparametric monitoring shirt launched

Nexkin: multiparametric monitoring shirt launched

Chronolife announced the launch of Nexkin, a washable smart T-shirt that monitors six key physiological parameters to enable prevention, risk reduction, and remote monitoring.

Making motion sensing devices more personal

Making motion sensing devices more personal

An electrical impedance tomography toolkit lets users design and fabricate health and motion sensing devices.

Virtual physiotherapist enables stroke survivors to train

Virtual physiotherapist enables stroke survivors to train

A rehabilitation device can increase the amount of arm exercises stroke patients do without professional supervision.

Nintendo Wii improves balance of stroke patients

Nintendo Wii improves balance of stroke patients

Researchers have shown that a physiotherapy program that uses the Nintendo Wii console improves functionality, balance and life activities daily routine of stroke patients.

A glove-based sensor for those with trichotillomania

A glove-based sensor for those with trichotillomania

People who compulsively pull their hair – suffering from an affliction known as trichotillomania – could find relief with a new device.

Optimal use of activity trackers fails due to outdated computer skills

Optimal use of activity trackers fails due to outdated computer skills

Activity trackers are rising in popularity. Yet a new study demonstrates that many struggle to optimally use these devices. The cause? Outdated digital literacy skills.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

Popular articles

Subscribe to Newsletter