Wireless, skin-mounted sensors monitor babies, pregnant women in the developing...
Wireless, skin-mounted sensors monitor babies, pregnant women in the developing world.
Source: Northwestern University

Skin-mounted sensors monitor babies in the developing world

Every year, 15 million babies are born too early, with 1 million never making it to their next birthday. And in low-resource settings, the outlook is even more dire. Half of babies born at 32 weeks or earlier will die; whereas in high-resource settings, almost all of these babies survive. To help bridge this gap, an interdisciplinary team of Northwestern University researchers has developed a new wireless, battery-charged, affordable monitoring system for newborn babies that can easily be implemented to provide clinical-grade care in nearly any setting.

The new devices also exceed the capabilities of existing, wired monitoring technologies to provide information beyond traditional vital signs, including crying, movement, body orientation and heart sounds. These soft, flexible sensors also are far gentler on newborns’ fragile skin, and their wireless capabilities allow for more skin-to-skin contact with parents.

Not only can this technology lower risks by monitoring premature babies, it can also is monitor pregnant women during labor to ensure a healthy and safe delivery and reduce risks of maternal mortality. By closely monitoring the most vulnerable patients, physicians can be alerted to intervene before the infant or mother become seriously ill.

‘From the hospital to the home to the field’

Photo

Led by Northwestern’s John A. Rogers, a pioneer in the emerging field of bio-integrated electronics, the research team developed the sensors last year and tested them on babies in the United States. Now, with support from the Bill & Melinda Gates Foundation and Save the Children, his team is deploying the devices internationally, starting with hospitals in Ghana, India, Kenya and Zambia. “We designed our technology to offer affordable, clinical-grade monitoring capabilities for use anywhere in the world — from the hospital to the home to the field,” Rogers said. “Using advanced concepts in soft electronics, we achieved devices that are safe, easy to use and patient-centric. We included in our research a focus on features to allow application in low-resource settings in the developing world, where this type of technology has the greatest potential to improve and possibly save lives.”

“The new technology represents a monumental advance in neonatal and pediatric care,” said Dr. Debra Weese-Mayer, a pediatrician in autonomic medicine at Northwestern University Feinberg School of Medicine, who co-led the study with Rogers. “This is not strictly about making critical care systems ‘wireless’, this is about thinking expansively about what non-traditional variables we need to incorporate to more fully study health and ensure stability."

Reliable in areas without stable power

The new study builds on previous research conducted in the Rogers lab. Last February, Rogers and his collaborators published results from a study conducted at Lurie Children’s Hospital and Prentice Women’s Hospital in Chicago. Here, researchers tested a pair of wireless, battery-free, flexible sensors on premature babies. The sensors proved to be as precise and accurate as traditional wire-based monitoring devices that interfere with parent-baby cuddling and physical bonding.

To move these platforms from Chicago into the developing world, Rogers’ team added a small, thin, rechargeable battery to give the device stable, reliable power for operation in rural settings and to improve the wireless operating range. The team also added extra sensing capabilities to monitor crying, movement and heart sounds. “We couldn’t just drop our existing technology into other countries and different settings without taking their specific needs into account,” Rogers said. “We wanted to understand the broader landscape and to develop a technology that is easy-to-use, helpful and practical. We knew that we needed to build the foundations for highly robust, reusable devices, applicable in regions with limited facilities and resources.”

“Some areas experience rolling blackouts every day and uneven internet coverage,” said Dr. Shuai (Steve) Xu, a Northwestern Medicine dermatologist and co-first author of the study who leads deployment of the system on the ground. “People in these areas need a practical device that works and is cheaper to manufacture.”

Skin-mounted sensors monitor babies in the developing world

Implementing technology abroad

The sensors use radio frequencies to wirelessly transmit data from the baby to nurses’ station displays. They also can send data directly to a smartphone or tablet. “The beauty of the technology is that it can operate with a wide range of mobile devices without sacrificing accuracy, relative to the most sophisticated systems used in hospitals today,” Xu said. “You don’t need expensive equipment that requires a specialized bioengineer and I.T. department to install. You pull out your mobile device, connect to our sensors, and you’re taking care of patients.”

Xu, the medical director of the Querrey Simpson Institute for Bio-electronics, assistant professor of dermatology and pediatrics at Feinberg and assistant professor of biomedical engineering at McCormick, has spent the past six months leading a team of engineers in setting up the technology in hospitals in Kenya and Zambia, working with nurses and physicians. The program will involve testing the sensors on 15,000 pregnant women and 500 newborn babies by mid-2021.

“This is a collaborative team effort,” Xu said. “We’ve spent a lot of time working with and listening to physicians, nurses and health care workers in each location. We want to make sure that our technology is useful and helps solve problems they face every day. It’s been incredibly motivating.”

So far, 42 babies in Kenya have worn the wireless sensors alongside gold-standard, traditional monitoring systems so researchers could do a side-by-side, quantitative comparison. After validating the device at Aga Khan University Hospital, the team plans to move the technology to low-resource hospitals in rural Africa, where the need is greatest. “The urgency of need in Nairobi is significant, but nothing compared to that in the rural areas,” Rogers said. “There’s room for improvement everywhere, but the added value of making affordable health care monitoring systems is so much higher in these settings.”

Subscribe to our newsletter

Related articles

Wireless oxygen sensor monitors sick infants

Wireless oxygen sensor monitors sick infants

Researchers have created a mobile, wearable device the size of a Band-Aid could allow babies to leave the hospital and be monitored from home.

Wireless sensors monitor babies in NICU

Wireless sensors monitor babies in NICU

Wireless body sensors could replace the tangle of wire-based sensors that currently monitor babies in hospitals’ NICU and pose a barrier to parent-baby cuddling and physical bonding.

Wearable respiration monitor built with children’s toy

Wearable respiration monitor built with children’s toy

Researchers have developed a wearable, disposable respiration monitor that provides high-fidelity readings on a continuous basis.

Wearable strain sensor uses light for monitoring

Wearable strain sensor uses light for monitoring

Researchers have developed a novel wearable strain sensor based on the modulation of optical transmittance of a carbon nanotube (CNT)-embedded elastomer.

3D printed sensor invented for wearables

3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

Smart insoles unlock the secrets of your sole

Smart insoles unlock the secrets of your sole

Researchers at Stevens Institute of Technology have developed an AI-powered, smart insole that instantly turns any shoe into a portable gait-analysis laboratory.

A smart jumpsuit provides information on infants' development

A smart jumpsuit provides information on infants' development

Researchers have developed a smart jumpsuit, or a garment that accurately measures the spontaneous and voluntary movement of infants from the age of five months.

A wearable gas sensor for health monitoring

A wearable gas sensor for health monitoring

A highly sensitive wearable gas sensor for environmental and human health monitoring may soon become commercially available.

“Band-aid” sensor patch monitors vital parameters

“Band-aid” sensor patch monitors vital parameters

Researchers have developed a patch-based health diagnosis sensor system that is easily attached to skin, like a band aid.

Popular articles