The patch contains artificial sweat ducts through the material’s ultrathin...
The patch contains artificial sweat ducts through the material’s ultrathin layers.
Source: Felice Frankel

Sweat-proof e-skin takes reliable vitals

MIT engineers and researchers in South Korea have developed a sweat-proof “electronic skin” — a conformable, sensor-embedded sticky patch that monitors a person’s health without malfunctioning or peeling away, even when a wearer is perspiring.

The patch is patterned with artificial sweat ducts, similar to pores in human skin, that the researchers etched through the material’s ultrathin layers. The pores perforate the patch in a kirigami-like pattern, similar to that of the Japanese paper-cutting art. The design ensures that sweat can escape through the patch, preventing skin irritation and damage to embedded sensors.

The kirigami design also helps the patch conform to human skin as it stretches and bends. This flexibility, paired with the material’s ability to withstand sweat, enables it to monitor a person’s health over long periods of time, which has not been possible with previous “e-skin” designs. The results are a step toward long-lasting smart skins that may track daily vitals or the progression skin cancer and other conditions.

“With this conformable, breathable skin patch, there won’t be any sweat accumulation, wrong information, or detachment from the skin,” says Jeehwan Kim, associate professor of mechanical engineering at MIT. “We can provide wearable sensors that can do constant long-term monitoring."

A sweaty hurdle

Kim’s group specializes in fabricating flexible semiconductor films. The researchers have pioneered a technique called remote epitaxy, which involves growing ultrathin, high-quality semiconductor films on wafers at high temperature and selectively peeling away the films, which they can then combine and stack to form sensors far thinner and more flexible than conventional wafer-based designs.

Recently, their work drew the attention of the cosmetics company Amorepacific, which was interested in developing thin wearable tape to continuously monitor changes in skin. The company struck up a collaboration with Kim to fashion the group’s flexible semiconducting films into something that could be worn over long periods of time.

But the team soon came against a barrier that other e-skin designs have yet to clear: sweat. Most experimental designs embed sensors in sticky, polymer-based materials that are not very breathable. Other designs, made from woven nanofibers, can let air through, but not sweat. If an e-skin were to work over the long-term, Kim realized it would have to be permeable to not just vapor but also sweat.

“Sweat can accumulate between the e-skin and your skin, which could cause skin damage and sensor malfunctioning,” Kim says. “So we tried to address these two problems at the same time, by allowing sweat to permeate through electronic skin.”

Schematic illustration of perforated e-skins.
Schematic illustration of perforated e-skins.
Source: Courtesy of the researchers

Making the cut

For design inspiration, the researchers looked to human sweat pores. They found that the diameter of the average pore measures about 100 microns, and that pores are randomly distributed throughout skin. They ran some initial simulations to see how they might overlay and arrange artificial pores, in a way that would not block actual pores in human skin. “Our simple idea is, if we provide artificial sweat ducts in electronic skin and make highly-permeable paths for the sweat, we may achieve long-term monitorability,” MIT postdoc Hanwool Yeon explains.

They started with a periodic pattern of holes, each about the size of an actual sweat pore. They found that if pores were spaced close together, at a distance smaller than an average pore’s diameter, the pattern as a whole would efficiently permeate sweat. But they also found that if this simple hole pattern were etched through a thin film, the film was not very stretchable, and it broke easily when applied to skin.

The researchers found they could increase the strength and flexibility of the hole pattern by cutting thin channels between each hole, creating a pattern of repeating dumbbells, rather than simple holes, that relaxed strain, rather than concentrating it in one place. This pattern, when etched into a material, created a stretchable, kirigami-like effect.

“If you wrap a piece of paper over a ball, it’s not conformable,” Kim says. “But if you cut a kirigami pattern in the paper, it could conform. So we thought, why not connect the holes with a cut, to have kirigami-like conformability on the skin? At the same time we can permeate sweat.”

Following this rationale, the team fabricated an electronic skin from multiple functional layers, each which they etched with dumbbell-patterned pores. The skin’s layers comprise an ultrathin semiconductor-patterned array of sensors to monitor temperature, hydration, ultraviolet exposure, and mechanical strain. This sensor array is sandwiched between two thin protective films, all of which overlays a sticky polymer adhesive. “The e-skin is like human skin — very stretchable and soft, and sweat can permeate through it,” Yeon says.

The researchers tested the e-skin by sticking it to a volunteer’s wrist and forehead. The volunteer wore the tape continuously over a week. Throughout this period, the new e-skin reliably measured his temperature, hydration levels, UV exposure, and pulse, even during sweat-inducing activities, such as running on a treadmill for 30 minutes and consuming a spicy meal.

The team’s design also conformed to skin, sticking to the volunteer’s forehead as he was asked to frown repeatedly while sweating profusely, compared with other e-skin designs that lacked sweat permeability, and easily detached from the skin.

Kim plans to improve the design’s strength and durability. While the tape is both permeable to sweat and highly conformable, thanks to its kirigami patterning, it’s this same patterning, paired with the tape’s ultrathin form, that makes it quite fragile to friction. As a result, volunteers had to wear a casing around the tape to protect it during activities such as showering. “Because the e-skin is very soft, it can be physically damaged,” Yeon says. “We aim to improve the resilience of electronic skin.”

Subscribe to our newsletter

Related articles

Snake skin inspires development of wearable sensors

Snake skin inspires development of wearable sensors

Researchers at Terasaki Institute for Biomedical Innovation have designed a wearable sensor with wide-ranging strain sensitivity.

Forget wearables: smart fabrics to monitor health

Forget wearables: smart fabrics to monitor health

Engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile.

Self-aware materials for living structures

Self-aware materials for living structures

Researchers at University of Pittsburgh have developed a revolutionary scalable material that senses and powers itself.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

E-textiles made with new cellulose thread

E-textiles made with new cellulose thread

Researchers have developed a thread made of conductive cellulose, which offers practical possibilities for electronic textiles.

An all-in-one health monitor

An all-in-one health monitor

Engineers have developed a skin patch that can continuously track blood pressure and heart rate while measuring the wearer’s levels of glucose as well as lactate.

Biodegradable displays for sustainable sensors

Biodegradable displays for sustainable sensors

Scientists have developed biodegradable displays that due to their flexibility and adhesion can be worn directly on the hand.

Microneedles: Nano-sized, huge impact

Microneedles: Nano-sized, huge impact

By downscaling needles tool to micrometer-size, researchers open even more areas of application for them, while bypassing some of the most important issues.

Popular articles

Subscribe to Newsletter