On-chip UHD SS–MSCs as a device-unitized power source.
On-chip UHD SS–MSCs as a device-unitized power source.
Source: Professor Sang-Young Lee, UNIST

Tiny microsupercapacitor for wearable devices

A tiny microsupercapacitor (MSC) that is as small as the width of a person's fingerprint and can be integrated directly with an electronic chip has been developed. This has attracted major attention as a novel technology to lead the era of Internet of Things (IoT) since it can be driven independently when applied to individual electronic components.

Through the study, Professor Sang-Young Lee and his research team in the School of Energy and Chemical Engineering at UNIST have unveiled a new class of ultrahigh areal number density solid-state MSCs (UHD SS–MSCs) on a chip via electrohydrodynamic (EHD) jet printing. According to the research team, this is the first study to exploit EHD jet printing in the MSCs.

A supercapacitor (SC), also known as an ultracapacitor, can store much more energy than ordinary capacitors. The benefits of supercapacitors include having high power delivery and longer cycle life compared to lithium-based secondary batteries. In particular, it can be produced as small as the width of a person's fingerprint via semiconductor manufacturing process, and thus can be also applicable for wearables and Internet of Things (IoT) devices.

However, because the heat produced in manufacturing process may cause deterioration of the electrical characteristics of the supercapacitor, it has been difficult to connect them directly to electronic components. In addition, the fabrication method that combines supercapacitors with electronic components via inkjet printing technique has also the disadvantage of lower precision.

A tiny micro supercapacitor (MSC) as small as the width of a person’s...
A tiny micro supercapacitor (MSC) as small as the width of a person’s fingerprint.
Source: Professor Sang-Young Lee, UNIST

The research team solved this issue using EHD jet printing, a high-resolution patterning technique in microelectronics. EHD jet printing uses the electrode and electrolyte for printing purpose similar to that of conventional inkjet printing, yet it can control printed liquid with an electric field. "We were able to produce up to 54.9 unit cells per square centimeter (cm2) via electro-hydrodynamic jet printing technique, and thus the output of 65.9 volts (V) was achieved in the same area," says Kwonhyung Lee (Combined M.S/Ph.D. of Energy and Chemical Engineering, UNIST), the first author of the study.

The team also succeeded in fabricating 36 unit cells on a chip (area = 8.0 mm × 8.2 mm, 54.9 cells cm−2) and areal operating voltage (65.9 V cm−2) that lie far beyond those of previously reported MSCs fabricated by printing techniques. Besides, upon exposure to hot temperature (80 degrees C), these cells maintained normal cyclic voltammetry (CV) profiles, and thus has proven they can withstand excessive heat generated during the operation of actual electronic component. In addition, these batteries can provide customized powere supplies, as they can be connected either in series or parallel. "In this study, we have demonstrated on-chip UHD SS–MSCs fabricated via EHD jet printing," says Professor Lee. "The on-chip UHD SS–MSCs presented here hold great promise as a new platform technology for miniaturized monolithic power sources with customized design and tunable electrochemical properties."

Subscribe to our newsletter

Related articles

Printed electronics could charge out of thin air

Printed electronics could charge out of thin air

Researchers have developed a new approach to printed electronics which allows ultra-low power electronic devices that could recharge from ambient light or radiofrequency noise.

Your body is your internet – and now it can’t be hacked

Your body is your internet – and now it can’t be hacked

Researchers have built a device that could protect your pacemaker, other medical tech from remote hacks before they happen.

Wearable harvests power while you sleep

Wearable harvests power while you sleep

Engineers have developed a flexible strip that can be worn on a fingertip and generate small amounts of electricity when a person’s finger sweats or presses on it.

Using human body to recharge smartwatches

Using human body to recharge smartwatches

Researchers have designed a prototype charging system for wearable devices - it uses human skin as conductor.

Vibrator 'thimble' could reduce falls amongst seniors

Vibrator 'thimble' could reduce falls amongst seniors

Researchers have developed a device using accelerometers and vibrators that can be worn on the fingertips like a thimble to help reduce 'postural sway' and improve balance amongst seniors

Soft sensors for monitoring pregnant women

Soft sensors for monitoring pregnant women

Researchers have developed three soft, flexible, wireless sensors that allow movement and provide more precise data than existing ones.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Wearable antennae stretches boundaries of medical tech

Wearable antennae stretches boundaries of medical tech

Researchers from Penn State led two international collaborations to prototype a wireless, wearable transmitter while also improving the transmitter design process.

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Popular articles

Subscribe to Newsletter