Tiny tooth-mounted sensors track what you eat

Monitoring in real time what happens in and around our bodies can be invaluable in the context of health care or clinical studies, but not so easy to do. That could soon change thanks to new, miniaturized sensors developed by researchers at the Tufts University School of Engineering that, when mounted directly on a tooth and communicating wirelessly with a mobile device, can transmit information on glucose, salt and alcohol intake.

Photo
A miniaturized sensor mounted on a tooth.
Source: SilkLab, Tufts University

In the journal Advanced Materials, researchers note that future adaptations of these sensors could enable the detection and recording of a wide range of nutrients, chemicals and physiological states.

Previous wearable devices for monitoring dietary intake suffered from limitations such as requiring the use of a mouth guard, bulky wiring, or necessitating frequent replacement as the sensors rapidly degraded. Tufts engineers sought a more adoptable technology and developed a sensor with a mere 2mm x 2mm footprint that can flexibly conform and bond to the irregular surface of a tooth. In a similar fashion to the way a toll is collected on a highway, the sensors transmit their data wirelessly in response to an incoming radiofrequency signal.

The sensors are made up of three sandwiched layers: a central “bioresponsive” layer that absorbs the nutrient or other chemicals to be detected, and outer layers consisting of two square-shaped gold rings. Together, the three layers act like a tiny antenna, collecting and transmitting waves in the radiofrequency spectrum. As an incoming wave hits the sensor, some of it is cancelled out and the rest transmitted back, just like a patch of blue paint absorbs redder wavelengths and reflects the blue back to our eyes.

The sensor, however, can change its “color.” For example, if the central layer takes on salt, or ethanol, its electrical properties will shift, causing the sensor to absorb and transmit a different spectrum of radiofrequency waves, with varying intensity. That is how nutrients and other analytes can be detected and measured.

“In theory we can modify the bioresponsive layer in these sensors to target other chemicals – we are really limited only by our creativity,” said Fiorenzo Omenetto, Ph.D., corresponding author and the Frank C. Doble Professor of Engineering at Tufts. “We have extended common RFID [radiofrequency ID] technology to a sensor package that can dynamically read and transmit information on its environment, whether it is affixed to a tooth, to skin, or any other surface.”

Subscribe to our newsletter

Related articles

3D printed werables never need to charge

3D printed werables never need to charge

Engineers have developed a new type of wearable device that is 3D printed to custom fit the wearer.

A wearable sensor for neonatal seizure monitoring

A wearable sensor for neonatal seizure monitoring

Hongyu Chen has developed a wearable sensor system for the continuous monitoring of neonatal seizures.

Wearable devices in the surgical environment

Wearable devices in the surgical environment

In surgery, wearable technologies can assist, augment, and provide a means of patient assessment before, during and after surgical procedures.

Wearables made with laser-induced graphene

Wearables made with laser-induced graphene

Graphene could advance flexible electronics according to a Penn State-led international research team.

‘Smart’ shirt keeps tabs on the heart

‘Smart’ shirt keeps tabs on the heart

A flexible carbon nanotube fibers can be incorporated into clothing to function as wearable health monitors.

Diaper sensors that monitor urine sugar levels

Diaper sensors that monitor urine sugar levels

New wireless diaper sensors powered by biofuel cell could help prevent diabetes and simplify long-term care.

Diabetology 4.0: emerging technologies for diabetes care

Diabetology 4.0: emerging technologies for diabetes care

This overview introduces smart insulin delivery systems and more innovations that help patients and doctors guide decision-making in diabetes care.

Skin patch for early warning of strokes

Skin patch for early warning of strokes

Engineers developed a soft and stretchy ultrasound patch that can be worn on the skin to monitor blood flow through major arteries and veins deep inside a person’s body.

Snake skin inspires development of wearable sensors

Snake skin inspires development of wearable sensors

Researchers at Terasaki Institute for Biomedical Innovation have designed a wearable sensor with wide-ranging strain sensitivity.

Popular articles

Subscribe to Newsletter