The new device monitored therapeutic UV light in blue light phototherapy for...
The new device monitored therapeutic UV light in blue light phototherapy for newborns with jaundice in the neonatal intensive care unit.
Source: S.Y. Heo et al., Science Translational Medicine (2018)

Tiny wearable device enables precision phototherapy

The world’s smallest wearable, battery-free device has been developed by Northwestern Medicine and McCormick School of Engineering scientists to measure exposure to light across multiple wavelengths, from the ultra violet (UV) to visible and even infrared parts of the solar spectrum. It can record up to three separate wavelengths of light at one time.

When the solar-powered, virtually indestructible device was mounted on human study participants, it recorded multiple forms of light exposure during outdoor activities, even in the water. The device monitored therapeutic UV light in clinical phototherapy booths for psoriasis and atopic dermatitis as well as blue light phototherapy for newborns with jaundice in the neonatal intensive care unit. It also demonstrated the ability to measure white light exposure for seasonal affective disorder. As such, it enables precision phototherapy for these health conditions, and it can monitor, separately and accurately, UVB and UVA exposure for people at high risk for melanoma, a deadly form of skin cancer. For recreational users, the sensor can help warn of impending sunburn.

Miniaturized, battery-free wireless devices capable of accurately monitoring...
Miniaturized, battery-free wireless devices capable of accurately monitoring exposure to the sun or to lamps for phototherapy.
Source: John Rogers Group/Northwestern University

Virtually indestructible

The device was designed by a team of investigators in the group of John Rogers, PhD, a professor of Neurological Surgery at Northwestern University Feinberg School of Medicine. “From the standpoint of the user, it couldn’t be easier to use — it’s always on yet never needs to be recharged,” Rogers said. “It weighs as much as a raindrop, has a diameter smaller than that of an M&M and the thickness of a credit card. You can mount it on your hat or glue it to your sunglasses or watch.”

It’s also rugged, waterproof and doesn’t need a battery. “There are no switches or interfaces to wear out, and it is completely sealed in a thin layer of transparent plastic,” Rogers said. “It interacts wirelessly with your phone. We think it will last forever.” Rogers tried to break it. His students dunked devices in boiling water and in a simulated washing machine. They still worked.

The scientists are particularly excited about the device’s use for measuring the entire UV spectrum and accumulating total daily exposure. “There is a critical need for technologies that can accurately measure and promote safe UV exposure at a personalized level in natural environments,” said co-senior author Steve Xu, MD, a Northwestern Medicine dermatologist. “We hope people with information about their UV exposure will develop healthier habits when out in the sun,” Xu said. “UV light is ubiquitous and carcinogenic. Skin cancer is the most common type of cancer worldwide. Right now, people don’t know how much UV light they are actually getting. This device helps you maintain an awareness and for skin cancer survivors, could also keep their dermatologists informed.”

First accurate dosing of phototherapy

Currently, the amount of light patients actually receive from phototherapy is not measured. “We know that the lamps for phototherapy are not uniform in their output — a sensor like this can help target problem areas of the skin that aren’t getting better,” Xu said. Physicians don’t know how much blue light a jaundiced newborn is actually absorbing or how much white light a patient with seasonal affective disorder gets from a light box. The new device will measure this for the first time and allow physicians to optimize the therapy by adjusting the position of the patient or the light source.

Because the device operates in an “always on” mode, its measurements are more precise and accurate than any other light dosimeter now available, the scientists said. Current dosimeters only sample light intensity briefly at set time intervals and assume that the light intensity at times between those measurements is constant, which is not necessarily the case, especially in active, outdoor use scenarios. They are also clunky, heavy and expensive.

UVA sunlight skin sensor on fingernail.
UVA sunlight skin sensor on fingernail.
Source: Northwestern University

How the tiny sensor works

Light passes through a window in the sensor and strikes a millimeter-scale semiconductor photodetector. This device produces a minute electrical current with a magnitude proportional to the intensity of the light. This current passes to an electronic component called a capacitor where the associated charge is captured and stored. A communication chip embedded in the sensor reads the voltage across this capacitor and passes the result digitally and wirelessly to the user’s smartphone. At the same time, it discharges the capacitor, thereby resetting the device.

Multiple detectors and capacitors allow measurements of UVB and UVA exposure separately. The device communicates with the users’ phone to access weather and global UV index information (the amount of light coming through the clouds). By combining this information, the user can infer how much time they have been in the direct sun and out of shade. The user’s phone can then send an alert if they have been in the sun too long and need to duck into the shade.

Subscribe to our newsletter

Related articles

'Smart' bandages - a revolution in healing

'Smart' bandages - a revolution in healing

On the 100th anniversary of the Band-Aid, Tufts engineer Sameer Sonkusale is working to make “smart” bandages.

Robotic textiles could enable new mechanotherapy

Robotic textiles could enable new mechanotherapy

A new smart fabric that can be inflated and deflated by temperature-dependent liquid-vapor phase changes could enable a range of medical therapeutics.

Melanoma: patch may be a treatment option

Melanoma: patch may be a treatment option

Scientists at Purdue University have developed a skin patch that can deliver chemotherapy into melanoma tumors in an effective and painless way.

Printed tattoo electrodes measure brain signal

Printed tattoo electrodes measure brain signal

A researcher has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

Wearable sensor to help treat swallowing disorders

Wearable sensor to help treat swallowing disorders

A wearable monitoring device to make treatments easier and more affordable for the millions of people with swallowing disorders is about to be released into the market.

Activity trackers provide key predictors of mortality

Activity trackers provide key predictors of mortality

Researchers from Johns Hopkins Medicine show that wearable activity trackers are a reliable tool for predicting death risk in older adults.

Bioelectronic implant could prevent opioid deaths

Bioelectronic implant could prevent opioid deaths

Researchers are developing a device that can sense the effects of a potentially fatal level of ingested opioids and deliver a life-saving dose of naloxone.

Printed electronics open way for personalized biosensors

Printed electronics open way for personalized biosensors

The first demonstration of a fully print-in-place electronics technique is gentle enough to work on surfaces as delicate as human skin and paper.

Wireless sensors are impacting prosthetics

Wireless sensors are impacting prosthetics

Researchers have teamed up to develop wireless sensors to improve the performance of prosthetics for individuals with upper limb amputations.

Popular articles