These stretchable, inexpensive, tattoo-like circuits can conform and adhere to...
These stretchable, inexpensive, tattoo-like circuits can conform and adhere to highly curved 3D surfaces like a model of a human brain.
Source: College of Engineering, Carnegie Mellon University

Ultrathin electronic tattoos may lead to next-gen wearables

Researchers at Carnegie Mellon University’s College of Engineering are using an off-the-shelf printer to develop robust, highly flexible, tattoo-like circuits for use in wearable computing. The low-cost process adds trace amounts of an electrically-conductive, liquid metal alloy to tattoo paper that adheres to human skin. These ultrathin tattoos can be applied easily with water, the same way one would apply a child’s decorative tattoo with a damp sponge.

Other tattoo-like electronics either require complex fabrication techniques inside a cleanroom or lack the material performance required for stretchable digital circuit functionality on skin. In recеnt years, the researchеrs have creatеd liquid metаl transistоrs, invisible circuits, sеlf-healing circuits, and thеrmally cоnductive rubbеr (known as ‘Thubber’).

“We use a desktop inkjet printer to print traces of silver nanoparticles on temporary tattoo paper. We then coat the particles with a thin layer of gallium indium alloy that increases the electrical conductivity and allows the printed circuit to be more mechanically robust. The tattoos are ultrathin, very stretchable, and inexpensive to produce,” said Carmel Majidi, an associate professor of mechanical engineering.

In addition to low-cost processing, these tattoos provide other advantages. Because they have mechanical properties similar to lightweight fabrics, they remain functional under bending, folding, twisting, and strains up to about 30% (which is the typical stretchability of human skin). They can conform and adhere to highly curved 3-D surfaces, like a model of a human brain or a lemon.

Applications for ultrathin compliant tattoos include epidermal biomonitoring, soft robotics, flexible displays, and 3-D-transferable printed electronics.

Subscribe to our newsletter

Related articles

Humanising wearable health technologies

Humanising wearable health technologies

Designer Leah Heiss considers her work as creating “emotional technologies”, i.e. wearable devices based on human-centred design principles. For her, empathy is everything!

Smart ring detects COVID-19 early

Smart ring detects COVID-19 early

According to new research, the Oura smart ring is indeed suitable for detecting COVID-19 infection up to three days before symptoms appear.

Verifying and validating the clinical usefulness of wearables

Verifying and validating the clinical usefulness of wearables

Researchers have developed a framework that will help data scientists and other researchers use better digital health tools for clinical purposes.

3D printed sensor invented for wearables

3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Can ‘smart toilets’ be the next

Can ‘smart toilets’ be the next

Wearables are transforming the ability to monitor and improve health, but a decidedly low-tech commodity—the humble toilet—may have potential to outperform them all.

Kirigami sensor patch could improve injury recovery

Kirigami sensor patch could improve injury recovery

Scientists created a 3D printed a wearable kirigami sensor patch for shoulders that could improve injury recovery and athletic training.

Smart insole monitors foot health for diabetic patients

Smart insole monitors foot health for diabetic patients

The smart insole can be inserted into a sneaker or dress shoe to passively monitor the foot health of a person living with diabetes.

Sensor could monitor healing of cerebral aneurysms

Sensor could monitor healing of cerebral aneurysms

A wireless sensor small enough to be implanted in the blood vessels of the human brain could help clinicians evaluate the healing of aneurysms.

Popular articles