An on-skin device designed by engineers at the University of Missouri can...
An on-skin device designed by engineers at the University of Missouri can achieve around 11 degrees Fahrenheit of cooling to the human body. The device also includes numerous human health care applications such as the ability to monitor blood pressure, electrical activity of the heart and the level of skin hydration.
Source: University of Missouri

Wearable AC monitors vital data

One day, soldiers could cool down on the military battlefield — preventing heat stroke or exhaustion — by using “wearable air conditioning,” an on-skin device designed by engineers at the University of Missouri. The device includes numerous human health care applications such as the ability to monitor blood pressure, electrical activity of the heart and the level of skin hydration.

Unlike similar products in use today or other related concepts, this breathable and waterproof device can deliver personal air conditioning to a human body through a process called passive cooling. Passive cooling does not utilize electricity, such as a fan or pump, which researchers believe allows for minimal discomfort to the user.

“Our device can reflect sunlight away from the human body to minimize heat absorption, while simultaneously allowing the body to dissipate body heat, thereby allowing us to achieve around 11 degrees Fahrenheit of cooling to the human body during the daytime hours,” said corresponding author Zheng Yan, an assistant professor in the College of Engineering. “We believe this is one of the first demonstrations of this capability in the emerging field of on-skin electronics.”

Currently, the device is a small wired patch, and researchers say it will take one to two years to design a wireless version. They also hope to one day take their technology and apply it to ‘smart’ clothing.

“Eventually, we would like to take this technology and apply it to the development of smart textiles,” Yan said. “That would allow for the device’s cooling capabilities to be delivered across the whole body. Right now, the cooling is only concentrated in a specific area where the patch is located. We believe this could potentially help reduce electricity usage and also help with global warming.”

Subscribe to our newsletter

Related articles

Smart fabrics with bioactive inks monitor body

Smart fabrics with bioactive inks monitor body

Researchers have developed biomaterial-based inks that respond to and quantify chemicals released from the body or in the surrounding environment by changing color.

Smart textile fibers measure wearer’s health

Smart textile fibers measure wearer’s health

Researchers have developed electronic fibers that, when embedded in textiles, can collect a wealth of information about our bodies by measuring subtle and complex fabrics deformations.

Sensors woven into a shirt can monitor vital signs

Sensors woven into a shirt can monitor vital signs

Researchers have developed a way to incorporate electronic sensors into stretchy fabrics, allowing them to create shirts or other garments that could be used to monitor vital signs such as temperature, respiration, and heart rate.

Smart insoles unlock the secrets of your sole

Smart insoles unlock the secrets of your sole

Researchers at Stevens Institute of Technology have developed an AI-powered, smart insole that instantly turns any shoe into a portable gait-analysis laboratory.

‘Smart shirt’ proving itself on monitoring lung disease

‘Smart shirt’ proving itself on monitoring lung disease

A smart shirt that measures lung function by sensing movements in the chest has proven to be accurate when compared to traditional testing equipment.

Smart textiles boost connectivity between wearable sensors

Smart textiles boost connectivity between wearable sensors

Researchers have invented a completely new way for wearable devices to interconnect which enable easier health monitoring, medical interventions and human–machine interfaces.

‘Smart’ pajamas could help improve sleep

‘Smart’ pajamas could help improve sleep

Researchers have developed pajamas embedded with self-powered sensors that provide unobtrusive and continuous monitoring of heartbeat, breathing and sleep posture.

E-textile sensor could power wearable devices

E-textile sensor could power wearable devices

Materials scientists have developed an alternative to batteries that could power wearable biosensors for health monitoring.

A highly elastic and ultrathin skin display

A highly elastic and ultrathin skin display

Researchers have developed a ultrathin, elastic display that fits snugly on the skin.

Popular articles