Wearable device measures cortisol in sweat

A group led by materials scientist Alberto Salleo at Stanford University has created a stretchy patch that, applied directly to the skin, wicks up sweat and assesses how much cortisol a person is producing.

Photo
This wearable sensor detects stress hormone in sweat.
Source: Stanford University/Science Advances

“We are particularly interested in sweat sensing, because it offers noninvasive and continuous monitoring of various biomarkers for a range of physiological conditions,” said Onur Parlak, a post-doctoral scholar in the Salleo lab and lead author of the paper. “This offers a novel approach for the early detection of various diseases and evaluation of sports performance.”

Clinical tests that measure cortisol provide an objective gauge of emotional or physical stress in research subjects and can help doctors tell if a patient’s adrenal or pituitary gland is working properly. If the prototype version of the wearable device becomes a reality, it could allow people with an imbalance to monitor their own levels at home. A fast-working test like this could also reveal the emotional state of young – even non-verbal – children, who might not otherwise be able to communicate that they feel stress.

Drawing shows details of the layers contained in the cortisol biosensor...
Drawing shows details of the layers contained in the cortisol biosensor developed by the Salleo lab and two close-up images of the holes in the bottom of the sensor that wick in sweat.
Source: Onur Parlak

The cortisol challenge

While discussing Parlak’s work at a conference, someone suggested to Salleo that it would be great if a sensor could measure cortisol. Cortisol presents a special challenge to biosensors like the one Parlak was developing because these sensors detect a molecule’s positive or negative charge – and cortisol has no charge.

To overcome this challenge, Parlak built his stretchy, rectangular sensor around a membrane that specifically binds only to cortisol. Stuck to the skin, it sucks in sweat passively through holes in the bottom of the patch. The sweat pools in a reservoir, which is topped by the cortisol-sensitive membrane. Charged ions like sodium or potassium, also found in sweat, pass through the membrane unless they are blocked by cortisol. It’s those backed up charged ions the sensor detects, not the cortisol itself. On top of all this is a waterproof layer that protects the patch from contamination.

“I always get excited about a device, but the sweat collection system that Onur devised is really clever,” Salleo said. “Without any active microfluidics, he’s able to collect enough sweat to do the measurements.”

All a user needs to see cortisol levels is to sweat (enough to glisten), apply the patch and connect it to a device for analysis, which gives results in seconds. In the future, the researchers hope the sensor could be part of a fully integrated system.

Parlak first showed that the device measured up to the gold standard clinical test in the lab, then gave it a real world test. He strapped on his running shoes and recruited two volunteers, who all ran for 20 minutes with the patches on their arms. In both the lab and real world tests, the results were similar to the gold standard.

So far, the sensor appears to work as designed. But the researchers want to make it more reliable and accurate, and also make sure it is reusable. The prototype seems to work multiple times so long as it is not saturated with sweat. In the future, they may try the cortisol sensor on saliva, which would avoid patients needing to sweat.

Subscribe to our newsletter

Related articles

Wearable sweat sensor detects Gout-causing compounds

Wearable sweat sensor detects Gout-causing compounds

Researchers describe a mass-producible wearable sensor that can monitor levels of metabolites and nutrients in a person's blood by analyzing their sweat.

Smart bandage shows promise for wound management

Smart bandage shows promise for wound management

Wearable sensor detects multiple chronic wound biomarkers to facilitate timely and personalised wound care.

No needles required for glucose levels monitoring

No needles required for glucose levels monitoring

Researchers have developed a first-of-its-kind wearable, noninvasive glucose monitoring device prototype.

Sensor warns of impending COVID-19 cytokine storm

Sensor warns of impending COVID-19 cytokine storm

Scientists report preliminary results on a sweat sensor that acts as an early warning system for an impending cytokine storm, which could help doctors more effectively treat patients.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

Face mask sensor to detect COVID-19

Face mask sensor to detect COVID-19

Researchers are developing a color-changing test strip that can be stuck on a mask and used to detect SARS-CoV-2 in a user’s breath or saliva.

Micro-supercapacitors to self-power wearables

Micro-supercapacitors to self-power wearables

A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible.

Smartwatch can detect early signs of illness

Smartwatch can detect early signs of illness

Researchers have developed a smartwatch app designed to alert users when their bodies show signs of fighting an infection, such as elevated heart rate.

Patches detect when a viral disease is getting worse

Patches detect when a viral disease is getting worse

Xsensio has been awarded CHF 1.8 million in EU funding to adapt its Lab-on-Skin sensing patches so that they can detect when a viral illness like the flu or COVID-19 is about to get worse.

Popular articles

Subscribe to Newsletter