Wearable devices set to diagnose preeclampsia or epilepsy

Transforming how common health conditions are diagnosed using point-of-care and wearable bio diagnostic devices is the goal of a new University of South Australia project.

Photo
Professor Benjamin Thierry.
Source: University of South Australia

UniSA biomedical engineer Professor Benjamin Thierry aims to develop a range of solid-state sensing and wearable technologies capable of diagnosing conditions including preeclampsia, epilepsy, fetal arrhythmias and heart attacks.

Prof Thierry hopes these technologies will help address the significant health outcome disparities, which sees people living in rural and remote areas experience higher levels of disease and reduced access to health services, compared with their metropolitan counterparts. “Wearable consumer products such as the Fitbit are already mainstream, yet the enormous transformative medical potential of wearable technologies is yet to be realised,” he says.

“There is a huge opportunity for us to create wearable devices capable of better diagnosing and monitoring medical conditions, particularly in rural and remote settings where patients often do not have access to the testing and specialist care that is available in cities. Some of the technologies I hope to develop include wearable devices able to continuously and accurately monitor the ECG, which could in turn predict epileptic seizures or detect preeclampsia and other related pregnancy complications."

These wearables use a cutting-edge solid-state sensing technology called Field Effect Transistors, which can measure bioelectric signals with extreme sensitivity when implemented at the nanoscale.

In addition, Prof Thierry will develop conformal devices based on Magnetic Tunneling Junction sensors to record and map magnetic fields produced by electrical activity in the heart. He hopes this will enable more accurate non-invasive monitoring of fetal cardiac activity and rapid and point-of-care diagnosis of acute coronary syndrome, including heart attacks.

“Central to this project is developing innovative and affordable devices that can be used directly by patients under the supervision of primary healthcare providers, without the need for invasive or lengthy testing or specialist care,” he says. “These devices have the potential to revolutionise how we care for people around the world who live in low resource and remote areas. If we can provide affordable tools able to predict or diagnose within local communities, common health issues such as pregnancy complications or heart attacks, we would significantly improve healthcare across the board and ultimately reduce the health outcome disparities that exist around the globe.”

Recommended article

Subscribe to our newsletter

Related articles

Micro-supercapacitors to self-power wearables

Micro-supercapacitors to self-power wearables

A stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices may be possible.

Soft sensors for monitoring pregnant women

Soft sensors for monitoring pregnant women

Researchers have developed three soft, flexible, wireless sensors that allow movement and provide more precise data than existing ones.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Sensor warns of impending COVID-19 cytokine storm

Sensor warns of impending COVID-19 cytokine storm

Scientists report preliminary results on a sweat sensor that acts as an early warning system for an impending cytokine storm, which could help doctors more effectively treat patients.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Wearable monitors jaundice-causing bilirubin in newborns

Wearable monitors jaundice-causing bilirubin in newborns

Researchers have developed the first wearable devices to precisely monitor jaundice, a yellowing of the skin caused by elevated bilirubin levels in the blood that can cause severe medical conditions in newborns.

Face mask sensor to detect COVID-19

Face mask sensor to detect COVID-19

Researchers are developing a color-changing test strip that can be stuck on a mask and used to detect SARS-CoV-2 in a user’s breath or saliva.

Smartwatch can detect early signs of illness

Smartwatch can detect early signs of illness

Researchers have developed a smartwatch app designed to alert users when their bodies show signs of fighting an infection, such as elevated heart rate.

Popular articles

Subscribe to Newsletter