Wearable devices set to diagnose preeclampsia or epilepsy

Transforming how common health conditions are diagnosed using point-of-care and wearable bio diagnostic devices is the goal of a new University of South Australia project.

Photo
Professor Benjamin Thierry.
Source: University of South Australia

UniSA biomedical engineer Professor Benjamin Thierry aims to develop a range of solid-state sensing and wearable technologies capable of diagnosing conditions including preeclampsia, epilepsy, fetal arrhythmias and heart attacks.

Prof Thierry hopes these technologies will help address the significant health outcome disparities, which sees people living in rural and remote areas experience higher levels of disease and reduced access to health services, compared with their metropolitan counterparts. “Wearable consumer products such as the Fitbit are already mainstream, yet the enormous transformative medical potential of wearable technologies is yet to be realised,” he says.

“There is a huge opportunity for us to create wearable devices capable of better diagnosing and monitoring medical conditions, particularly in rural and remote settings where patients often do not have access to the testing and specialist care that is available in cities. Some of the technologies I hope to develop include wearable devices able to continuously and accurately monitor the ECG, which could in turn predict epileptic seizures or detect preeclampsia and other related pregnancy complications."

These wearables use a cutting-edge solid-state sensing technology called Field Effect Transistors, which can measure bioelectric signals with extreme sensitivity when implemented at the nanoscale.

In addition, Prof Thierry will develop conformal devices based on Magnetic Tunneling Junction sensors to record and map magnetic fields produced by electrical activity in the heart. He hopes this will enable more accurate non-invasive monitoring of fetal cardiac activity and rapid and point-of-care diagnosis of acute coronary syndrome, including heart attacks.

“Central to this project is developing innovative and affordable devices that can be used directly by patients under the supervision of primary healthcare providers, without the need for invasive or lengthy testing or specialist care,” he says. “These devices have the potential to revolutionise how we care for people around the world who live in low resource and remote areas. If we can provide affordable tools able to predict or diagnose within local communities, common health issues such as pregnancy complications or heart attacks, we would significantly improve healthcare across the board and ultimately reduce the health outcome disparities that exist around the globe.”

Recommended article

Subscribe to our newsletter

Related articles

Withings’ wearable receives medical CE marking

Withings’ wearable receives medical CE marking

Withings announced the European availability of ScanWatch after receiving the CE marking for medical devices.

Wearable sensors made from microbial nanocellulose

Wearable sensors made from microbial nanocellulose

Researchers have created a wearable sensor printed on microbial nanocellulose, a natural polymer.

Wearable offers new option for monitoring heart health

Wearable offers new option for monitoring heart health

An invention may turn one of the most widely used materials for biomedical applications into wearable devices to help monitor heart health.

Wearable monitors health using sweat

Wearable monitors health using sweat

Researchers have developed a device to monitor health conditions in the body using a person’s sweat.

Wearable tracks COVID-19 key symptoms

Wearable tracks COVID-19 key symptoms

Researchers have developed a wearable device to catch early signs and symptoms associated with COVID-19 and to monitor patients as the illness progresses.

Wearable strain sensor uses light for monitoring

Wearable strain sensor uses light for monitoring

Researchers have developed a novel wearable strain sensor based on the modulation of optical transmittance of a carbon nanotube (CNT)-embedded elastomer.

3D printed sensor invented for wearables

3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

3D printing helps form wearable sensor

3D printing helps form wearable sensor

Researchers have developed a highly sensitive wearable pressure sensor for health monitoring applications and early diagnosis of diseases.

Wearable sensor to help treat swallowing disorders

Wearable sensor to help treat swallowing disorders

A wearable monitoring device to make treatments easier and more affordable for the millions of people with swallowing disorders is about to be released into the market.

Popular articles