Wearable oral sodium sensor could improve hypertension control

For people who have hypertension and certain other conditions, eating too much salt raises blood pressure and increases the likelihood of heart complications. To help monitor salt intake, researchers have developed a flexible and stretchable wireless sensing system designed to be comfortably worn in the mouth to measure the amount of sodium a person consumes.

Photo
The intraoral electronics with a sodium sensor is based on a breathable elastomeric membrane that resembles a dental retainer. The ultrathin device is flexible and stretchable, and can wirelessly transmit data up to 10 meters.
Source: Rob Felt, Georgia Tech

Based on an ultrathin, breathable elastomeric membrane, the sensor integrates with a miniaturized flexible electronic system that uses Bluetooth technology to wirelessly report the sodium consumption to a smartphone or tablet. The researchers plan to further miniaturize the system – which now resembles a dental retainer – to the size of a tooth.

“We can unobtrusively and wirelessly measure the amount of sodium that people are taking in over time,” explained Woon-Hong Yeo, an assistant professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “By monitoring sodium in real-time, the device could one day help people who need to restrict sodium intake and learn to change their eating habits and diet.”

The device has been tested in three adult study participants who wore the sensor system for up to a week while eating both solid and liquid foods including vegetable juice, chicken soup and potato chips.

According to the American Heart Association, Americans on average eat more than 3,400 milligrams of sodium each day, far more than the limit of 1,500 milligrams per day it recommends. The association surveyed a thousand adults and found that “one-third couldn’t estimate how much sodium they ate, and another 54 percent thought they were eating less than 2,000 milligrams of sodium a day.”

The sodium sensing system could address that challenge by helping users better track how much salt they consume, Yeo said. “Our device could have applications for many different goals involving eating behavior for diet management or therapeutics,” he added.

Key to development of the intraoral sensor was replacement of traditional plastic and metal-based electronics with biocompatible and ultrathin components connected using mesh circuitry. Sodium sensors are available commercially, but Yeo and his collaborators developed a flexible micro-membrane version to be integrated with the miniaturized hybrid circuitry.

“The entire sensing and electronics package was conformally integrated onto a soft material that users can tolerate,” Yeo explained. “The sensor is comfortable to wear, and data from it can be transmitted to a smartphone or tablet. Eventually the information could go a doctor or other medical professional for remote monitoring.”

The flexible design began with computer modeling to optimize the mechanical properties of the device for use in the curved and soft oral cavity. The researchers then used their model to design the actual nanomembrane circuitry and choose components.

The device can monitor sodium intake in real-time, and record daily amounts. Using a smartphone or tablet application, the system could advise users planning meals how much of their daily salt allocation they had already consumed. The device can communicate with a smartphone up to ten meters away.

Next steps for the sodium sensor are to further miniaturize the device, and test it with users who have the medical conditions to address: hypertension, obesity or diabetes.

The researchers would like to do away with the small battery, which must be recharged daily to keep the sensor in operation. One option would be to power the device inductively, which would replace the battery and complex circuit with a coil that could obtain power from a transmitter outside the mouth.

Subscribe to our newsletter

Related articles

3D printed sensor invented for wearables

3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

A wearable gas sensor for health monitoring

A wearable gas sensor for health monitoring

A highly sensitive wearable gas sensor for environmental and human health monitoring may soon become commercially available.

Nano-based wearable electronics for mental disorder diagnosis

Nano-based wearable electronics for mental disorder diagnosis

NanoEDGE research project aims at converging production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization.

Wristbands do a health check while you work out

Wristbands do a health check while you work out

Nanotech-powered electrodes help solve the challenges of using sweat to assess biological conditions in real time.

Sensors open door to wearable medical diagnostic device

Sensors open door to wearable medical diagnostic device

Scientists have designed tiny optical sensors that open the door to developing a wearable device that allows doctors to medically diagnose people's health in real time.

High-tech clothing: Wearable health

High-tech clothing: Wearable health

Thanks to a variety of smart technologies, high-tech clothing today is capable of analyzing body functions or actively optimizing the microclimate.

Smart fabrics with bioactive inks monitor body

Smart fabrics with bioactive inks monitor body

Researchers have developed biomaterial-based inks that respond to and quantify chemicals released from the body or in the surrounding environment by changing color.

Wearable monitors health using sweat

Wearable monitors health using sweat

Researchers have developed a device to monitor health conditions in the body using a person’s sweat.

Smartwatch turns into biochemical monitoring system

Smartwatch turns into biochemical monitoring system

Engineers have designed a thin adhesive film that could upgrade a consumer smartwatch into a powerful health monitoring system.

Popular articles