With a novel layer to help the metallic components of the sensor bond, an...
With a novel layer to help the metallic components of the sensor bond, an international team of researchers printed sensors directly on human skin.
Source: Ling Zhang, Penn State/Cheng Lab and Harbin Institute of Technology

Wearable sensors printed on skin without heat

Wearable sensors are evolving from watches and electrodes to bendable devices that provide far more precise biometric measurements and comfort for users. Now, an international team of researchers has taken the evolution one step further by printing sensors directly on human skin without the use of heat.

Led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, the team published their results in ACS Applied Materials & Interfaces. “In this article, we report a simple yet universally applicable fabrication technique with the use of a novel sintering aid layer to enable direct printing for on-body sensors,” said first author Ling Zhang, a researcher in the Harbin Institute of Technology in China and in Cheng’s laboratory.

Cheng and his colleagues previously developed flexible printed circuit boards for use in wearable sensors, but printing directly on skin has been hindered by the bonding process for the metallic components in the sensor. Called sintering, this process typically requires temperatures of around 572 degrees Fahrenheit (300 degrees Celsius) to bond the sensor’s silver nanoparticles together.

“The skin surface cannot withstand such a high temperature, obviously,” Cheng said. “To get around this limitation, we proposed a sintering aid layer — something that would not hurt the skin and could help the material sinter together at a lower temperature.”

By adding a nanoparticle to the mix, the silver particles sinter at a lower temperature of about 212 F (100 C). “That can be used to print sensors on clothing and paper, which is useful, but it’s still higher than we can stand at skin temperature,” Cheng said, who noted that about 104 F (40 C) could still burn skin tissue. “We changed the formula of the aid layer, changed the printing material and found that we could sinter at room temperature.”

The room temperature sintering aid layer consists of polyvinyl alcohol paste — the main ingredient in peelable face masks — and calcium carbonate — which comprises eggshells. The layer reduces printing surface roughness and allows for an ultrathin layer of metal patterns that can bend and fold while maintaining electromechanical capabilities. When the sensor is printed, the researchers use an air blower, such as a hair dryer set on cool, to remove the water that is used as a solvent in the ink. “The outcome is profound,” Cheng said. “We don’t need to rely on heat to sinter.”

The sensors are capable of precisely and continuously capturing temperature, humidity, blood oxygen levels and heart performance signals, according to Cheng. The researchers also linked the on-body sensors into a network with wireless transmission capabilities to monitor the combination of signals as they progress.

The process is also environmentally friendly, Cheng said. The sensor remains robust in tepid water for a few days, but a hot shower will easily remove it. “It could be recycled, since removal doesn’t damage the device,” Cheng said. “And, importantly, removal doesn’t damage the skin, either. That’s especially important for people with sensitive skin, like the elderly and babies. The device can be useful without being an extra burden to the person using it or to the environment.”

Next, the researchers plan to alter the technology to target specific applications as needed, such as a precise on-body sensor network placed to monitor the particular symptoms associated with COVID-19.

Subscribe to our newsletter

Related articles

Snake skin inspires development of wearable sensors

Snake skin inspires development of wearable sensors

Researchers at Terasaki Institute for Biomedical Innovation have designed a wearable sensor with wide-ranging strain sensitivity.

Forget wearables: smart fabrics to monitor health

Forget wearables: smart fabrics to monitor health

Engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile.

Soft sensors for monitoring pregnant women

Soft sensors for monitoring pregnant women

Researchers have developed three soft, flexible, wireless sensors that allow movement and provide more precise data than existing ones.

Patching up your ehealth

Patching up your ehealth

Researchers have developed ultrathin self-powered health patches that can monitor a user's pulse and blood pressure, which may lead to new flexible motion-based energy harvesting devices.

Hybrid materials advance wearable devices

Hybrid materials advance wearable devices

We spoke to wearables and medical device expert Professor John Rogers about the benefits, challenges, trends and innovation within the sector.

Sensor warns of impending COVID-19 cytokine storm

Sensor warns of impending COVID-19 cytokine storm

Scientists report preliminary results on a sweat sensor that acts as an early warning system for an impending cytokine storm, which could help doctors more effectively treat patients.

Wearable sensors to track Parkinson's symptoms

Wearable sensors to track Parkinson's symptoms

Scientists have developed algorithms that, combined with wearable sensors, could help clinicians to monitor the progression of Parkinson’s disease.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Popular articles

Subscribe to Newsletter