Image of the wearable stimulator.
Image of the wearable stimulator.
Source: University of Otago

Wearable stimulator to zap Alzheimer's disease

Stimulating humans' sense of smell to prevent conditions such as Alzheimer's Disease is the focus of international research led by the University of Otago.

The olfactory system, or sense of smell, is known to be dysfunctional in the early stages of Alzheimer's and Parkinson's disease. It is also shown that proper olfactory function can play a key role in regaining consciousness after brain injuries.

The Otago research centers around a wearable concept prototype, similar to Google-glasses, which produces small electronic pulses on the skin to stimulate the olfactory nervous system. Areas of the brain prone to Alzheimer's, Parkinson's, and coma, can be jump-started to reduce or reverse the onset of those serious conditions.

Lead author, Associate Professor Yusuf Ozgur Cakmak from Otago's Department of Anatomy, says promising early results pave the way for developing the world's first non-invasive, wearable electrical stimulation system to target the olfactory regions.

"Olfactory nerves have terminals deep in the brain regions which influence memory and navigation. We're hopeful this method will help stimulate these networks to alleviate symptoms or suppress the progression of Alzheimer's disease to Dementia. It also has potential to help coma recovery and Parkinson's disease," Associate Professor Cakmak says.

"Applying this treatment via a headset on a hair-free zone that can be worn in daily routine instead of more invasive treatments makes this method unique."

Yusuf Ozgur Cakmak

Modulation of the olfactory regions has been attempted successfully with electrical stimulation previously, either directly (intraoperatively through the nasal bones) or indirectly through the vagus nerve. This research sought to develop a means of delivering electrical stimulation to the olfactory region in a non-invasive fashion and in a way that is simpler, easier, and less cumbersome.

"Applying this treatment via a headset on a hair-free zone that can be worn in daily routine instead of more invasive treatments makes this method unique," Associate Professor Cakmak adds.

The multiple electrode configurations have been tested with the aid of electrical field modelling that is validated with direct human brain recordings during brain surgery.

Otago's research team is collaborating with New York based company Soterix Medical, a world leader in non-invasive neuromodulation and brain monitoring technology. The international team will be testing their wearable stimulator in a clinical trial in 2020.

One in 10 people age 65 and older (10%) has Alzheimer's dementia and 13.8 million people in the US age 65 and older are projected to have Alzheimer's dementia by 2050, according to the Alzheimer's Association.

The study has been published in Frontiers in Neuroscience.

Subscribe to our newsletter

Related articles

Biosensor may help guide treatment of Alzheimer’s

Biosensor may help guide treatment of Alzheimer’s

Researchers have created biosensor technology that may help lead to safe stem cell therapies for treating Parkinson’s diseases.

Chatbot may detect early dementia in time for intervention

Chatbot may detect early dementia in time for intervention

If Alzheimer's dementia is identified early, the decline in neural functioning can be stabilized or even curtailed in some cases.

A wireless chip shines light on the brain

A wireless chip shines light on the brain

Researchers have developed a chip that is powered wirelessly and can be surgically implanted to read neural signals and stimulate the brain with both light and electrical current.

Biosensors open up paths to treatments

Biosensors open up paths to treatments

Self-powered biosensors that could one day lead to wearable devices that do not need to be recharged, or even sensors that are powered by the very bodily process they are designed to monitor.

Parylene photonics enable optical biointerfaces

Parylene photonics enable optical biointerfaces

Scientists have invented an optical platform that will likely become the new standard in optical biointerfaces.

A wearable for treating antibiotic-resistant infections

A wearable for treating antibiotic-resistant infections

Researchers have developed a wearable solution that allows a patient to receive treatment of antibiotic-resistant infections and woundswithout leaving home.

'Smart' bandages - a revolution in healing

'Smart' bandages - a revolution in healing

On the 100th anniversary of the Band-Aid, Tufts engineer Sameer Sonkusale is working to make “smart” bandages.

Robotic textiles could enable new mechanotherapy

Robotic textiles could enable new mechanotherapy

A new smart fabric that can be inflated and deflated by temperature-dependent liquid-vapor phase changes could enable a range of medical therapeutics.

Melanoma: patch may be a treatment option

Melanoma: patch may be a treatment option

Scientists at Purdue University have developed a skin patch that can deliver chemotherapy into melanoma tumors in an effective and painless way.

Popular articles