Purdue waterproof, breathable and antibacterial self-powered clothing is based...
Purdue waterproof, breathable and antibacterial self-powered clothing is based on omniphobic triboelectric nanogenerators.
Source: Purdue University

Wearable turns away bacteria with your clothes

A new fabric innovation allows the wearer to control electronic devices through the clothing and keep the wearer safe from the latest virus that’s going around.

Purdue University researchers have developed a new fabric innovation that allows wearers to control electronic devices through clothing. “It is the first time there is a technique capable to transform any existing cloth item or textile into a self-powered e-textile containing sensors, music players or simple illumination displays using simple embroidery without the need for expensive fabrication processes requiring complex steps or expensive equipment,” said Ramses Martinez, an assistant professor in the School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue’s College of Engineering.

Photo
Researchers have developed a new fabric innovation that allows the wearer to control electronic devices through the clothing and keep the wearer safe from the latest virus that’s going around.
Source: Purdue University

“For the first time, it is possible to fabricate textiles that can protect you from rain, stains, and bacteria while they harvest the energy of the user to power textile-based electronics,” Martinez said. “These self-powered e-textiles also constitute an important advancement in the development of wearable machine-human interfaces, which now can be washed many times in a conventional washing machine without apparent degradation.”

Martinez said the Purdue waterproof, breathable and antibacterial self-powered clothing is based on omniphobic triboelectric nanogenerators (RF-TENGs) – which use simple embroidery and fluorinated molecules to embed small electronic components and turn a piece of clothing into a mechanism for powering devices. The Purdue team says the RF-TENG technology is like having a wearable remote control that also keeps odors, rain, stains and bacteria away from the user. “While fashion has evolved significantly during the last centuries and has easily adopted recently developed high-performance materials, there are very few examples of clothes on the market that interact with the user,” Martinez said. “Having an interface with a machine that we are constantly wearing sounds like the most convenient approach for a seamless communication with machines and the Internet of Things.”

Subscribe to our newsletter

Related articles

A wearable for treating antibiotic-resistant infections

A wearable for treating antibiotic-resistant infections

Researchers have developed a wearable solution that allows a patient to receive treatment of antibiotic-resistant infections and woundswithout leaving home.

High-tech clothing: Wearable health

High-tech clothing: Wearable health

Thanks to a variety of smart technologies, high-tech clothing today is capable of analyzing body functions or actively optimizing the microclimate.

‘Smart’ pajamas could help improve sleep

‘Smart’ pajamas could help improve sleep

Researchers have developed pajamas embedded with self-powered sensors that provide unobtrusive and continuous monitoring of heartbeat, breathing and sleep posture.

Smart insole could detect an infection

Smart insole could detect an infection

Researchers are working on a smart insole that flags changes in a patient’s gait, activity level and balance, as well as monitors for the localized increase in heat that can reveal a building infection before the human eye can spot it.

Sensor for smart textiles survives hammers

Sensor for smart textiles survives hammers

An ultra-sensitive, resilient strain sensor that can be embedded in textiles and soft robotic systems survived being tested by a washing machine and a car.

Magic fibers: ‘smart fabrics’ can change color

Magic fibers: ‘smart fabrics’ can change color

Researchers are testing new ways to spin liquid crystals into fibers that could be used in camouflage clothing or to create cleaning wipes that can detect the presence of bacteria.

Diamond-studded silk wound dressing improves healing

Diamond-studded silk wound dressing improves healing

Scientists have developed a next generation wound dressing that can detect infection and improve healing in burns, skin grafts and chronic wounds.

E-textiles: Dyeing process gives electronic properties

E-textiles: Dyeing process gives electronic properties

Scientists have shown how smart textiles can be produced in a comparatively easy way, thus opening up new use cases.

Electronic skin reacts to pain like human skin

Electronic skin reacts to pain like human skin

Researchers have developed electronic artificial skin that reacts to pain just like real skin, opening the way to better prosthetics, smarter robotics and non-invasive alternatives to skin grafts.

Popular articles