Purdue waterproof, breathable and antibacterial self-powered clothing is based...
Purdue waterproof, breathable and antibacterial self-powered clothing is based on omniphobic triboelectric nanogenerators.
Source: Purdue University

Wearable turns away bacteria with your clothes

A new fabric innovation allows the wearer to control electronic devices through the clothing and keep the wearer safe from the latest virus that’s going around.

Purdue University researchers have developed a new fabric innovation that allows wearers to control electronic devices through clothing. “It is the first time there is a technique capable to transform any existing cloth item or textile into a self-powered e-textile containing sensors, music players or simple illumination displays using simple embroidery without the need for expensive fabrication processes requiring complex steps or expensive equipment,” said Ramses Martinez, an assistant professor in the School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue’s College of Engineering.

Photo
Researchers have developed a new fabric innovation that allows the wearer to control electronic devices through the clothing and keep the wearer safe from the latest virus that’s going around.
Source: Purdue University

“For the first time, it is possible to fabricate textiles that can protect you from rain, stains, and bacteria while they harvest the energy of the user to power textile-based electronics,” Martinez said. “These self-powered e-textiles also constitute an important advancement in the development of wearable machine-human interfaces, which now can be washed many times in a conventional washing machine without apparent degradation.”

Martinez said the Purdue waterproof, breathable and antibacterial self-powered clothing is based on omniphobic triboelectric nanogenerators (RF-TENGs) – which use simple embroidery and fluorinated molecules to embed small electronic components and turn a piece of clothing into a mechanism for powering devices. The Purdue team says the RF-TENG technology is like having a wearable remote control that also keeps odors, rain, stains and bacteria away from the user. “While fashion has evolved significantly during the last centuries and has easily adopted recently developed high-performance materials, there are very few examples of clothes on the market that interact with the user,” Martinez said. “Having an interface with a machine that we are constantly wearing sounds like the most convenient approach for a seamless communication with machines and the Internet of Things.”

Subscribe to our newsletter

Related articles

MRSA: Microneedle patch delivers antibiotics

MRSA: Microneedle patch delivers antibiotics

Researchers are developing a microneedle patch that delivers antibiotics directly into the affected skin area.

Decentralized patient monitoring: Sensors quickly detect changes in vital signs

Decentralized patient monitoring: Sensors quickly detect changes in vital signs

The Fraunhofer Institutes project M³Infekt aims to develop a multi-modal, modular and mobile system of sensors for monitoring infectious diseases.

A wearable for treating antibiotic-resistant infections

A wearable for treating antibiotic-resistant infections

Researchers have developed a wearable solution that allows a patient to receive treatment of antibiotic-resistant infections and woundswithout leaving home.

High-tech clothing: Wearable health

High-tech clothing: Wearable health

Thanks to a variety of smart technologies, high-tech clothing today is capable of analyzing body functions or actively optimizing the microclimate.

‘Smart’ pajamas could help improve sleep

‘Smart’ pajamas could help improve sleep

Researchers have developed pajamas embedded with self-powered sensors that provide unobtrusive and continuous monitoring of heartbeat, breathing and sleep posture.

Smart insole could detect an infection

Smart insole could detect an infection

Researchers are working on a smart insole that flags changes in a patient’s gait, activity level and balance, as well as monitors for the localized increase in heat that can reveal a building infection before the human eye can spot it.

Smart textiles: breathable fabric to power small electronics

Smart textiles: breathable fabric to power small electronics

Scientists have created a new triboelectric fabric that generates electricity from the movement of the body while remaining flexible and breathable.

Wash-and-wear biosensors

Wash-and-wear biosensors

A process turns clothing fabric into biosensors which measure a muscle’s electrical activity as it is worn.

A smartwatch-based algorithm to detect viral infections

A smartwatch-based algorithm to detect viral infections

Purdue University engineers and physIQ have developed a viral detection algorithm for smartwatches.

Popular articles

Subscribe to Newsletter