Wearable ultrasound patch monitors central blood pressure

Scientists at the University of California San Diego created a flexible ultrasonic patch that non-invasively monitors the blood pressure in major vessels such as the jugular vein and carotid artery. Applications include real-time, continuous monitoring of blood pressure changes in patients with heart or lung disease, as well as patients who are critically ill or undergoing surgery.

Photo
Wearable ultrasound patch tracks blood pressure in a deep artery or vein.
Source: Chonghe Wang/Nature Biomedical Engineering

The patch uses ultrasound, so it could potentially be used to non-invasively track other vital signs and physiological signals from places deep inside the body. “Wearable devices have so far been limited to sensing signals either on the surface of the skin or right beneath it. But this is like seeing just the tip of the iceberg,” said Sheng Xu, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering and the corresponding author of the study. “By integrating ultrasound technology into wearables, we can start to capture a whole lot of other signals, biological events and activities going on way below the surface in a non-invasive manner.”

Central blood pressure is the pressure in the central blood vessels, which send blood directly from the heart to other major organs throughout the body. Medical experts consider central blood pressure more accurate than peripheral blood pressure and also say it’s better at predicting heart disease. However, measuring central blood pressure isn’t typically done in routine exams, because it is invasive. It involves a catheter inserted into a blood vessel in a patient’s arm, groin or neck and guiding it to the heart.

The UC San Diego-led team has developed a convenient alternative—a soft, stretchy ultrasound patch that can be worn on the skin and provide accurate, precise readings of central blood pressure each time, even while the user is moving. And it can still get a good reading through fatty tissue.

Measuring central blood pressure

Photo
When worn on the neck, the device records central blood pressure in the carotid artery (CA), internal jugular vein (Int JV) and external jugular vein (Ext JV)
Source: UC San Diego

The new ultrasound patch can continuously monitor central blood pressure in major arteries as deep as four centimeters (more than one inch) below the skin. “We are adding a third dimension to the sensing range of wearable electronics,” said Xu.

The patch was tested on a male subject, who wore it on the forearm, wrist, neck and foot. Tests were performed both while the subject was stationary and during exercise. Recordings collected with the patch were more consistent and precise than recordings from a commercial tonometer. The patch recordings were also comparable to those collected with a traditional ultrasound probe.

“A major advance of this work is it transforms ultrasound technology into a wearable platform. This is important because now we can start to do continuous, non-invasive monitoring of major blood vessels deep underneath the skin, not just in shallow tissues,” said said co-first author Chonghe Wang, a nanoengineering graduate student at UC San Diego.

Photo
The island-bridge structure allows the patch to be flexible and stretchable.
Source: UC San Diego

The patch is a thin sheet of silicone elastomer patterned with what’s called an “island-bridge” structure—an array of small electronic parts (islands) that are each connected by spring-shaped wires (bridges). Each island contains electrodes and devices called piezoelectric transducers, which produce ultrasound waves when electricity passes through them. The bridges connecting them are made of thin, spring-like copper wires. The island-bridge structure allows the entire patch to conform to the skin and stretch, bend and twist without compromising electronic function.

The patch uses ultrasound waves to continuously record the diameter of a pulsing blood vessel located as deep as four centimeters below the skin. This information then gets translated into a waveform using customized software. Each peak, valley and notch in the waveform, as well as the overall shape of the waveform, represents a specific activity or event in the heart. These signals provide a lot of detailed information to doctors assessing a patient’s cardiovascular health. They can be used to predict heart failure, determine if blood supply is fine, etc.

Researchers note that the patch still has a long way to go before it reaches the clinic. Improvements include integrating a power source, data processing units and wireless communication capability into the patch. “Right now, these capabilities have to be delivered by wires from external devices. If we want to move this from benchtop to bedside, we need to put all these components on board,” said Xu.

Subscribe to our newsletter

Related articles

Skin patch for early warning of strokes

Skin patch for early warning of strokes

Engineers developed a soft and stretchy ultrasound patch that can be worn on the skin to monitor blood flow through major arteries and veins deep inside a person’s body.

Tiny injectable chips use ultrasound for monitoring

Tiny injectable chips use ultrasound for monitoring

Engineers have developed the smallest single-chip system that is a complete functioning electronic circuit - and implantable chip visible only in a microscope.

Soft sensors for monitoring pregnant women

Soft sensors for monitoring pregnant women

Researchers have developed three soft, flexible, wireless sensors that allow movement and provide more precise data than existing ones.

Patching up your ehealth

Patching up your ehealth

Researchers have developed ultrathin self-powered health patches that can monitor a user's pulse and blood pressure, which may lead to new flexible motion-based energy harvesting devices.

A wearable monitor provides continuous blood pressure data

A wearable monitor provides continuous blood pressure data

Researchers are developing a revolutionary, portable blood pressure monitoring device that provides data continuously to patients.

Electronic skin – the next generation of wearables

Electronic skin – the next generation of wearables

Electronic skins will play a significant role in monitoring, personalized medicine, prosthetics, and robotics.

Wash-and-wear biosensors

Wash-and-wear biosensors

A process turns clothing fabric into biosensors which measure a muscle’s electrical activity as it is worn.

A smartwatch-based algorithm to detect viral infections

A smartwatch-based algorithm to detect viral infections

Purdue University engineers and physIQ have developed a viral detection algorithm for smartwatches.

Wearables must demonstrate efficacy in respiratory care

Wearables must demonstrate efficacy in respiratory care

Wearables are becoming a trend in respiratory care and many products are being developed to monitor patients remotely. But how much can these tools really help clinicians?

Popular articles

Subscribe to Newsletter