Wearable ultrasound patch monitors central blood pressure

Scientists at the University of California San Diego created a flexible ultrasonic patch that non-invasively monitors the blood pressure in major vessels such as the jugular vein and carotid artery. Applications include real-time, continuous monitoring of blood pressure changes in patients with heart or lung disease, as well as patients who are critically ill or undergoing surgery.

Photo
Wearable ultrasound patch tracks blood pressure in a deep artery or vein.
Source: Chonghe Wang/Nature Biomedical Engineering

The patch uses ultrasound, so it could potentially be used to non-invasively track other vital signs and physiological signals from places deep inside the body. “Wearable devices have so far been limited to sensing signals either on the surface of the skin or right beneath it. But this is like seeing just the tip of the iceberg,” said Sheng Xu, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering and the corresponding author of the study. “By integrating ultrasound technology into wearables, we can start to capture a whole lot of other signals, biological events and activities going on way below the surface in a non-invasive manner.”

Central blood pressure is the pressure in the central blood vessels, which send blood directly from the heart to other major organs throughout the body. Medical experts consider central blood pressure more accurate than peripheral blood pressure and also say it’s better at predicting heart disease. However, measuring central blood pressure isn’t typically done in routine exams, because it is invasive. It involves a catheter inserted into a blood vessel in a patient’s arm, groin or neck and guiding it to the heart.

The UC San Diego-led team has developed a convenient alternative—a soft, stretchy ultrasound patch that can be worn on the skin and provide accurate, precise readings of central blood pressure each time, even while the user is moving. And it can still get a good reading through fatty tissue.

Measuring central blood pressure

Photo
When worn on the neck, the device records central blood pressure in the carotid artery (CA), internal jugular vein (Int JV) and external jugular vein (Ext JV)
Source: UC San Diego

The new ultrasound patch can continuously monitor central blood pressure in major arteries as deep as four centimeters (more than one inch) below the skin. “We are adding a third dimension to the sensing range of wearable electronics,” said Xu.

The patch was tested on a male subject, who wore it on the forearm, wrist, neck and foot. Tests were performed both while the subject was stationary and during exercise. Recordings collected with the patch were more consistent and precise than recordings from a commercial tonometer. The patch recordings were also comparable to those collected with a traditional ultrasound probe.

“A major advance of this work is it transforms ultrasound technology into a wearable platform. This is important because now we can start to do continuous, non-invasive monitoring of major blood vessels deep underneath the skin, not just in shallow tissues,” said said co-first author Chonghe Wang, a nanoengineering graduate student at UC San Diego.

Photo
The island-bridge structure allows the patch to be flexible and stretchable.
Source: UC San Diego

The patch is a thin sheet of silicone elastomer patterned with what’s called an “island-bridge” structure—an array of small electronic parts (islands) that are each connected by spring-shaped wires (bridges). Each island contains electrodes and devices called piezoelectric transducers, which produce ultrasound waves when electricity passes through them. The bridges connecting them are made of thin, spring-like copper wires. The island-bridge structure allows the entire patch to conform to the skin and stretch, bend and twist without compromising electronic function.

The patch uses ultrasound waves to continuously record the diameter of a pulsing blood vessel located as deep as four centimeters below the skin. This information then gets translated into a waveform using customized software. Each peak, valley and notch in the waveform, as well as the overall shape of the waveform, represents a specific activity or event in the heart. These signals provide a lot of detailed information to doctors assessing a patient’s cardiovascular health. They can be used to predict heart failure, determine if blood supply is fine, etc.

Researchers note that the patch still has a long way to go before it reaches the clinic. Improvements include integrating a power source, data processing units and wireless communication capability into the patch. “Right now, these capabilities have to be delivered by wires from external devices. If we want to move this from benchtop to bedside, we need to put all these components on board,” said Xu.

Subscribe to our newsletter

Related articles

A wearable monitor provides continuous blood pressure data

A wearable monitor provides continuous blood pressure data

Researchers are developing a revolutionary, portable blood pressure monitoring device that provides data continuously to patients.

Smart ring detects COVID-19 early

Smart ring detects COVID-19 early

According to new research, the Oura smart ring is indeed suitable for detecting COVID-19 infection up to three days before symptoms appear.

Wearable devices set to diagnose preeclampsia or epilepsy

Wearable devices set to diagnose preeclampsia or epilepsy

Transforming how common health conditions are diagnosed using point-of-care and wearable bio diagnostic devices is the goal of a new University of South Australia project.

Wearable sensor tracks Vitamin C levels in sweat

Wearable sensor tracks Vitamin C levels in sweat

Researchers have developed a wearable, non invasive Vitamin C sensor that could provide a new, highly personalized option for users to track their daily nutritional intake and dietary adherence.

Necklace detects abnormal heart rhythm

Necklace detects abnormal heart rhythm

A necklace which detects abnormal heart rhythm will be showcased for the first time on EHRA Essentials 4 You, a scientific platform of the European Society of Cardiology (ESC).

Wearable tracks COVID-19 key symptoms

Wearable tracks COVID-19 key symptoms

Researchers have developed a wearable device to catch early signs and symptoms associated with COVID-19 and to monitor patients as the illness progresses.

Nutrition smart patch reduced diabetes risk

Nutrition smart patch reduced diabetes risk

A wearable smart patch will deliver precision data to help people personalise their diets and reduce their risk of developing lifestyle-related chronic diseases like Type 2 diabetes.

Smart contact lenses diagnose and treat diabetes

Smart contact lenses diagnose and treat diabetes

Researchers developed wirelessly driven ‘smart contact lens’ technology that can detect diabetes and further treat diabetic retinopathy just by wearing them.

Sensors woven into a shirt can monitor vital signs

Sensors woven into a shirt can monitor vital signs

Researchers have developed a way to incorporate electronic sensors into stretchy fabrics, allowing them to create shirts or other garments that could be used to monitor vital signs such as temperature, respiration, and heart rate.

Popular articles