A schematic diagram of the sensor system showing how the drops of sweat are...
A schematic diagram of the sensor system showing how the drops of sweat are directed towards the electrodes that are coated with enzymes that can detect low concentrations of target compounds.
Source: Reproduced with permission from reference 1. (c) 2019 John Wiley & Sons; 2019 KAUST; Xavier Pita

Wristbands do a health check while you work out

Next-generation fitness sensors could give deeper insights into human health through noninvasive testing of bodily fluids. A stretchy patch developed at KAUST could help this approach by making it easier to analyze sweat for critical biomarkers.

Human perspiration contains trace amounts of organic molecules that can act as measurable health indicators—glucose fluctuations, for example, may point to blood sugar problems, while high levels of lactic acid could signal oxygen deficiencies. To detect these molecules, researchers are developing flexible prototypes that sit on the skin and direct sweat toward special enzyme-coated electrodes. The specific nature of enzyme-substrate binding enables these sensors to electrically detect very low concentrations of target compounds.

One obstacle with enzyme biosensors, however, is their relatively short lifetimes. “Even though human skin is quite soft, it can delaminate the enzyme layer right off the biosensor,” says Yongjiu Lei, a Ph.D. student at KAUST.

A schematic diagram to show the various layers of the oxygen-rich enzyme...
A schematic diagram to show the various layers of the oxygen-rich enzyme electrode.
Source: Reproduced with permission from reference 1 (c) 2019 John Wiley & Sons; (c) 2019 KAUST; Xavier Pita

Lei and his colleagues in Husam Alshareef’s group have now developed a wearable system that can handle the rigors of skin contact and deliver improved biomarker detection. Their device runs on a thin, flat ceramic known as MXene that resembles graphene but contains a mixture of carbon and titanium atoms. The metallic conductivity and low toxicity of this 2D material make it an ideal platform for enzyme sensors, according to recent studies.

The team attached tiny dye nanoparticles to MXene flakes to boost its sensitivity to hydrogen peroxide, the main by-product of enzyme-catalyzed reactions in sweat. Then, they encapsulated the flakes in mechanically tough carbon nanotube fibers and transferred the composite onto a membrane designed to draw sweat through without pooling. A final coating of glucose or lactose-oxidase enzymes completed the electrode assembly.

The new electrodes could be repeatedly swapped in or out of a stretchy polymer patch that both absorbs sweat and transmits the measured signals of hydrogen peroxide to an external source, such as a smartphone. When the team placed the biosensor into a wristband worn by volunteers riding stationary bicycles, they saw lactose concentrations in sweat rise and fall in correlation with workout intensities. Changes in glucose levels could also be tracked as accurately in sweat as it is in blood. “We are working with KAUST and international collaborators under the umbrella of the Sensors Initiative to integrate tiny electrical generators into the patch,” says Alshareef, who led the project. “This will enable the patch to create its own power for personalized health monitoring.”

A schematic diagram of the sensor patch system to show the cover, the sensor...
A schematic diagram of the sensor patch system to show the cover, the sensor and the sweat-uptake layers.
Source: Reproduced with permission from reference 1 (c) 2019 John Wiley & Sons; (c) 2019 KAUST; Xavier Pita
Subscribe to our newsletter

Related articles

Converting human body motions into electricity

Converting human body motions into electricity

Bioengineers have invented a novel soft and flexible self-powered bioelectronic device that converts human body motions into electricity.

Diabetology 4.0: emerging technologies for diabetes care

Diabetology 4.0: emerging technologies for diabetes care

This overview introduces smart insulin delivery systems and more innovations that help patients and doctors guide decision-making in diabetes care.

Nano-thin piezoelectrics advance wearables

Nano-thin piezoelectrics advance wearables

A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats.

Implantable transmitter for wireless biomedical devices

Implantable transmitter for wireless biomedical devices

Scientists are working on inventions to use microchip technology in implantable devices and other wearable products such as smart watches to improve biomedical devices.

'Smart' breathalizer can reveal lung disease

'Smart' breathalizer can reveal lung disease

Using specialized nanoparticles, engineers have developed a way to monitor pneumonia or other lung diseases by analyzing the breath exhaled by the patient.

Wearable offers new option for monitoring heart health

Wearable offers new option for monitoring heart health

An invention may turn one of the most widely used materials for biomedical applications into wearable devices to help monitor heart health.

3D printed sensor invented for wearables

3D printed sensor invented for wearables

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance.

A wearable gas sensor for health monitoring

A wearable gas sensor for health monitoring

A highly sensitive wearable gas sensor for environmental and human health monitoring may soon become commercially available.

Nano-based wearable electronics for mental disorder diagnosis

Nano-based wearable electronics for mental disorder diagnosis

NanoEDGE research project aims at converging production techniques for functionalized electrodes with expertise in nanomaterial fabrication and characterization.

Popular articles

Subscribe to Newsletter